Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters








Database
Language
Publication year range
1.
Endocrinology ; 163(2)2022 02 01.
Article in English | MEDLINE | ID: mdl-34971379

ABSTRACT

Understanding the molecular mechanisms underlying pituitary organogenesis and function is essential for improving therapeutics and molecular diagnoses for hypopituitarism. We previously found that deletion of the forkhead factor, Foxo1, in the pituitary gland early in development delays somatotrope differentiation. While these mice grow normally, they have reduced growth hormone expression and free serum insulin-like growth factor-1 (IGF1) levels, suggesting a defect in somatotrope function. FOXO factors show functional redundancy in other tissues, so we deleted both Foxo1 and its closely related family member, Foxo3, from the primordial pituitary. We find that this results in a significant reduction in growth. Consistent with this, male and female mice in which both genes have been deleted in the pituitary gland (dKO) exhibit reduced pituitary growth hormone expression and serum IGF1 levels. Expression of the somatotrope differentiation factor, Neurod4, is reduced in these mice. This suggests a mechanism underlying proper somatotrope function is the regulation of Neurod4 expression by FOXO factors. Additionally, dKO mice have reduced Lhb expression and females also have reduced Fshb and Prl expression. These studies reveal FOXO transcription factors as important regulators of pituitary gland function.


Subject(s)
Forkhead Transcription Factors/physiology , Somatotrophs/physiology , Animals , Cell Differentiation/genetics , Cell Differentiation/physiology , Female , Forkhead Box Protein O1/deficiency , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/physiology , Forkhead Box Protein O3/deficiency , Forkhead Box Protein O3/genetics , Forkhead Box Protein O3/physiology , Gene Expression , Growth Hormone/genetics , Insulin-Like Growth Factor I/analysis , Male , Mice , Mice, Knockout , Pituitary Gland/chemistry , Pituitary Gland/physiology , RNA, Messenger/analysis , Somatotrophs/chemistry
2.
Cancer Prev Res (Phila) ; 15(1): 3-10, 2022 01.
Article in English | MEDLINE | ID: mdl-34667127

ABSTRACT

Current chemopreventive strategies require 3-5 years of continuous treatment and have the concerns of significant side effects; therefore, new chemopreventive agents that require shorter and safer treatments are urgently needed. In this study, we developed a new murine model of breast cancer that mimics human breast cancer initiation and is ideal for testing the efficacy of chemopreventive therapeutics. In this model, introduction of lentivirus carrying a PIK3CA gene mutant commonly found in breast cancers infects a small number of the mammary cells, leading to atypia first and then to ductal carcinomas that are positive for both estrogen receptor and progesterone receptor. Venetoclax is a BH3 mimetic that blocks the anti-apoptotic protein BCL-2 and has efficacy in treating breast cancer. We found that venetoclax treatment of atypia-bearing mice delayed the progression to tumors, improved overall survival, and reduced pulmonary metastasis. Therefore, prophylactic treatment to inhibit the pro-survival protein BCL-2 may provide an alternative to the currently available regimens in breast cancer prevention. PREVENTION RELEVANCE: This study demonstrates that prophylactic treatment with the BCL2-specific antagonist venetoclax prevents breast cancer initiated by a mutated and activated PIK3CA, the most common breast oncogene.


Subject(s)
Breast Neoplasms , Animals , Apoptosis , Apoptosis Regulatory Proteins , Breast Neoplasms/pathology , Female , Humans , Mice , Proto-Oncogene Proteins c-bcl-2 , Receptors, Estrogen
3.
Endocrinology ; 157(11): 4351-4363, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27631552

ABSTRACT

The etiology for half of congenital hypopituitarism cases is unknown. Our long-term goal is to expand the molecular diagnoses for congenital hypopituitarism by identifying genes that contribute to this condition. We have previously shown that the forkhead box transcription factor, FOXO1, is present in approximately half of somatotropes at embryonic day (e) 18.5, suggesting it may have a role in somatotrope differentiation or function. To elucidate the role of FOXO1 in somatotrope differentiation and function, Foxo1 was conditionally deleted from the anterior pituitary (Foxo1Δpit). Uncommitted progenitor cells are maintained and able to commit to the somatotrope lineage normally based on the expression patterns of Sox2, a marker of uncommitted pituitary progenitors, and Pou1f1 (also known as Pit1), which marks committed progenitors. Interestingly, Foxo1Δpit embryonic mice exhibit delayed somatotrope differentiation as evidenced by an almost complete absence of GH immunoreactivity at e16.5 and reduced expression of Gh at e18.5 and postnatal day (P) 3. Consistent with this conclusion, expression of GHRH receptor, a marker of terminally differentiated somatotropes, is significantly reduced at e18.5 and P3 in the absence of FOXO1. The mechanism of FOXO1 regulation of somatotrope differentiation may involve the basic helix-loop-helix transcription factor, Neurod4, which has been implicated in somatotrope differentiation and is significantly reduced in Foxo1Δpit mice. Foxo1Δpit mice do not exhibit growth defects, and at P21 their pituitary glands exhibit a normal distribution of somatotropes. These studies demonstrate that FOXO1 is important for initial somatotrope specification embryonically but is dispensable for postnatal somatotrope expansion and growth.


Subject(s)
Forkhead Box Protein O1/metabolism , Somatotrophs/cytology , Somatotrophs/metabolism , Animals , Cell Differentiation/genetics , Cell Differentiation/physiology , Embryo, Mammalian/metabolism , Exons/genetics , Female , Follicle Stimulating Hormone/genetics , Follicle Stimulating Hormone/metabolism , Forkhead Box Protein O1/genetics , Immunohistochemistry , In Situ Hybridization , Luteinizing Hormone/genetics , Luteinizing Hormone/metabolism , Mice , Pituitary Gland/cytology , Pituitary Gland/metabolism , Pregnancy , Stem Cells/cytology , Stem Cells/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL