Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters








Database
Language
Publication year range
1.
Nat Commun ; 15(1): 7424, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39198465

ABSTRACT

In fetal development, tissue interaction such as the interplay between blood vessel (BV) and epithelial tissue is crucial for organogenesis. Here we recapitulate the spatial arrangement between liver epithelial tissue and the portal vein to observe the formation of intrahepatic bile ducts (BDs) from human induced pluripotent stem cells (hiPSC). We co-culture hiPSC-liver progenitors on the artificial BV consisting of immature smooth muscle cells and endothelial cells, both derived from hiPSCs. After 3 weeks, liver progenitors within hiPSC-BV-incorporated liver organoids (BVLO) differentiate to cholangiocytes and acquire epithelial characteristics, including intercellular junctions, microvilli on the apical membrane, and secretory functions. Furthermore, liver surface transplanted-BVLO temporarily attenuates cholestatic injury symptoms. Single cell RNA sequence analysis suggests that BD interact with the BV in BVLO through TGFß and Notch pathways. Knocking out JAG1 in hiPSC-BV significantly attenuates bile duct formation, highlighting BVLO potential as a model for Alagille syndrome, a congenital biliary disease. Overall, we develop a novel 3D co-culture method that successfully establishes functional human BDs by emulating liver epithelial-BV interaction.


Subject(s)
Cell Differentiation , Coculture Techniques , Induced Pluripotent Stem Cells , Jagged-1 Protein , Liver , Organoids , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Organoids/metabolism , Organoids/cytology , Liver/cytology , Liver/metabolism , Liver/blood supply , Coculture Techniques/methods , Jagged-1 Protein/metabolism , Jagged-1 Protein/genetics , Alagille Syndrome/genetics , Alagille Syndrome/metabolism , Animals , Bile Ducts, Intrahepatic/cytology , Bile Ducts, Intrahepatic/metabolism , Blood Vessels/cytology , Blood Vessels/metabolism , Mice , Receptors, Notch/metabolism , Receptors, Notch/genetics , Endothelial Cells/metabolism , Endothelial Cells/cytology , Bile Ducts/cytology , Bile Ducts/metabolism , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/cytology , Transforming Growth Factor beta/metabolism
2.
Cell Rep ; 43(3): 113918, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38451817

ABSTRACT

Maximizing the potential of human liver organoids (LOs) for modeling human septic liver requires the integration of innate immune cells, particularly resident macrophage Kupffer cells. In this study, we present a strategy to generate LOs containing Kupffer cells (KuLOs) by recapitulating fetal liver hematopoiesis using human induced pluripotent stem cell (hiPSC)-derived erythro-myeloid progenitors (EMPs), the origin of tissue-resident macrophages, and hiPSC-derived LOs. Remarkably, LOs actively promote EMP hematopoiesis toward myeloid and erythroid lineages. Moreover, supplementing with macrophage colony-stimulating factor (M-CSF) proves crucial in sustaining the hematopoietic population during the establishment of KuLOs. Exposing KuLOs to sepsis-like endotoxins leads to significant organoid dysfunction that closely resembles the pathological characteristics of the human septic liver. Furthermore, we observe a notable functional recovery in KuLOs upon endotoxin elimination, which is accelerated by using Toll-like receptor-4-directed endotoxin antagonist. Our study represents a comprehensive framework for integrating hematopoietic cells into organoids, facilitating in-depth investigations into inflammation-mediated liver pathologies.


Subject(s)
Induced Pluripotent Stem Cells , Liver Diseases , Sepsis , Humans , Kupffer Cells , Liver/pathology , Liver Diseases/pathology , Organoids , Sepsis/pathology , Endotoxins , Cell Differentiation
3.
Int J Mol Sci ; 24(8)2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37108241

ABSTRACT

Human iPSC-derived liver organoids (LO) or hepatic spheroids (HS) have attracted widespread interest, and the numerous studies on them have recently provided various production protocols. However, the mechanism by which the 3D structures of LO and HS are formed from the 2D-cultured cells and the mechanism of the LO and HS maturation remain largely unknown. In this study, we demonstrate that PDGFRA is specifically induced in the cells that are suitable for HS formation and that PDGF receptors and signaling are required for HS formation and maturation. Additionally, in vivo, we show that the localization of PDGFRα is in complete agreement with mouse E9.5 hepatoblasts, which begin to form the 3D-structural liver bud from the single layer. Our results present that PDGFRA play important roles for 3D structure formation and maturation of hepatocytes in vitro and in vivo and provide a clue to elucidate the hepatocyte differentiation mechanism.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Mice , Animals , Cell Culture Techniques/methods , Liver , Hepatocytes , Cell Differentiation , Receptor, Platelet-Derived Growth Factor alpha/genetics , Spheroids, Cellular
4.
Stem Cell Reports ; 11(4): 852-860, 2018 10 09.
Article in English | MEDLINE | ID: mdl-30197117

ABSTRACT

Cellular membrane fluidity is a critical modulator of cell adhesion and migration, prompting us to define the systematic landscape of lineage-specific cellular fluidity throughout differentiation. Here, we have unveiled membrane fluidity landscapes in various lineages ranging from human pluripotency to differentiated progeny: (1) membrane rigidification precedes the exit from pluripotency, (2) membrane composition modulates activin signaling transmission, and (3) signatures are relatively germ layer specific presumably due to unique lipid compositions. By modulating variable lineage-specific fluidity, we developed a label-free "adhesion sorting (AdSort)" method with simple cultural manipulation, effectively eliminating pluripotent stem cells and purifying target population as a result of the over 1,150 of screened conditions combining compounds and matrices. These results underscore the important role of tunable membrane fluidity in influencing stem cell maintenance and differentiation that can be translated into lineage-specific cell purification strategy.


Subject(s)
Cell Lineage , Membrane Fluidity , Cell Adhesion , Cell Differentiation , Cell Membrane/metabolism , Humans , Induced Pluripotent Stem Cells/cytology , Kinetics
5.
Cytotherapy ; 20(6): 861-872, 2018 06.
Article in English | MEDLINE | ID: mdl-29793831

ABSTRACT

BACKGROUND AIMS: We have previously reported the generation of a current Good Manufacture Practice (cGMP)-compliant induced pluripotent stem cell (iPSC) line for clinical applications. Here we show that multiple cellular products currently being considered for therapy can be generated from a single master cell bank of this or any other clinically compliant iPSC line METHODS: Using a stock at passage 20 prepared from the cGMP-compliant working cell bank (WCB), we tested differentiation into therapeutically relevant cell types of the three germ layers using standardized but generic protocols. Cells that we generated include (i) neural stem cells, dopaminergic neurons and astrocytes; (ii) retinal cells (retinal pigment epithelium and photoreceptors); and (iii) hepatocyte, endothelial and mesenchymal cells. To confirm that these generic protocols can also be used for other iPSC lines, we tested the reproducibility of our methodology with a second clinically compliant line RESULTS: Our results confirmed that well-characterized iPSC lines have broad potency, and, despite allelic variability, the same protocols could be used with minimal modifications with multiple qualified lines. In addition, we introduced a constitutively expressed GFP cassette in Chr13 safe harbor site using a standardized previously described method and observed no significant difference in growth and differentiation between the engineered line and the control line indicating that engineered products can be made using a standardized methodology CONCLUSIONS: We believe that our demonstration that multiple products can be made from the same WCB and that the same protocols can be used with multiple lines offers a path to a cost-effective strategy for developing cellular products from iPSC lines.


Subject(s)
Cell Engineering/methods , Cell Engineering/standards , Cell Lineage , Guideline Adherence , Induced Pluripotent Stem Cells/cytology , Astrocytes/cytology , Astrocytes/physiology , Cell Differentiation , Cell Line , Dopaminergic Neurons/cytology , Dopaminergic Neurons/physiology , Endothelial Cells/cytology , Endothelial Cells/physiology , Guideline Adherence/standards , Hepatocytes/cytology , Hepatocytes/physiology , Humans , Induced Pluripotent Stem Cells/physiology , Mesoderm/cytology , Mesoderm/physiology , Neural Stem Cells/cytology , Neural Stem Cells/physiology , Practice Guidelines as Topic/standards , Reference Standards , Reproducibility of Results , Retina/cytology , Tissue Banks/standards
6.
Cell Rep ; 21(10): 2661-2670, 2017 Dec 05.
Article in English | MEDLINE | ID: mdl-29212014

ABSTRACT

Organoid technology provides a revolutionary paradigm toward therapy but has yet to be applied in humans, mainly because of reproducibility and scalability challenges. Here, we overcome these limitations by evolving a scalable organ bud production platform entirely from human induced pluripotent stem cells (iPSC). By conducting massive "reverse" screen experiments, we identified three progenitor populations that can effectively generate liver buds in a highly reproducible manner: hepatic endoderm, endothelium, and septum mesenchyme. Furthermore, we achieved human scalability by developing an omni-well-array culture platform for mass producing homogeneous and miniaturized liver buds on a clinically relevant large scale (>108). Vascularized and functional liver tissues generated entirely from iPSCs significantly improved subsequent hepatic functionalization potentiated by stage-matched developmental progenitor interactions, enabling functional rescue against acute liver failure via transplantation. Overall, our study provides a stringent manufacturing platform for multicellular organoid supply, thus facilitating clinical and pharmaceutical applications especially for the treatment of liver diseases through multi-industrial collaborations.


Subject(s)
Induced Pluripotent Stem Cells/cytology , Liver/enzymology , Organoids/cytology , Organoids/embryology , Pluripotent Stem Cells/cytology , Cell Differentiation/physiology , Cells, Cultured , Humans , Liver/cytology
7.
Dev Biol ; 305(2): 616-24, 2007 May 15.
Article in English | MEDLINE | ID: mdl-17362912

ABSTRACT

The in ovo electroporation in chicken embryos has widely been used as a powerful tool to study roles of genes during embryogenesis. However, the conventional electroporation technique fails to retain the expression of transgenes for more than several days because transgenes are not integrated into the genome. To overcome this shortcoming, we have developed a transposon-mediated gene transfer, a novel technique in chicken manipulations. It was previously reported that the transposon Tol2, originally found in medaka fish, facilitates an integration of a transgene into the genome when co-acting with Tol2 transposase. In this study, we co-electroporated a plasmid containing a CAGGS-EGFP cassette cloned in the Tol2 construct along with a transposase-encoding plasmid into early presomitic mesoderm or optic vesicles of chicken embryos. This resulted in persistent expression of EGFP at least until embryonic day 8 (E8) and E12 in somite-derived tissues and developing retina, respectively. The integration of the transgene was confirmed by genomic Southern blotting using chicken cultured cells. We further combined this transposon-mediated gene transfer with the tetracycline-dependent conditional expression system that we also developed recently. With this combined method, expression of a stably integrated transgene could be experimentally induced upon tetracycline administration at relatively late stages such as E6, where a variety of organogenesis are underway. Thus, the techniques proposed in this study provide a novel approach to study the mechanisms of late organogenesis, for which chickens are most suitable model animals.


Subject(s)
Animals, Genetically Modified , Chickens/genetics , Electroporation , Gene Expression Regulation, Developmental , Transgenes , Animals , Cell Line , Chick Embryo , DNA Transposable Elements , Gene Transfer Techniques , Transfection , Transposases/biosynthesis , Transposases/genetics
8.
Dev Biol ; 262(1): 32-50, 2003 Oct 01.
Article in English | MEDLINE | ID: mdl-14512016

ABSTRACT

We describe a systematic screening to search for molecules that act as an extracellular signal during somitogenesis in vertebrates. Somitogenesis, which gives rise to segmented structures of axial bones and muscles, is a consequence of cooperative morphogenetic movements caused by precisely regulated cell and tissue interactions. We employed a strategy that combined subtractive hybridization to enrich paraxial mesoderm/somite-specific cDNAs and the signal sequence trap method, which selects signal sequence-containing molecules. Ninety-two independent cDNAs found to possess a putative signal sequence or a transmembrane domain are presented with a data base accession number for each. These clones include cDNAs which were previously identified with a function characterized, cDNAs previously identified with an undetermined function, and also cDNAs with no similarity to known sequences. Among them, 16 clones exhibited peculiar patterns of expression in the presomitic mesoderm/somites revealed by whole-mount and section in situ hybridization techniques, with some clones also being expressed in the forming neural tube. This is the first report in which an elaborate strategy combining three different screening steps was employed to identify signaling molecules relevant to a particular morphogenetic process.


Subject(s)
DNA, Complementary/analysis , Protein Sorting Signals , Somites/physiology , Animals , Base Sequence , COS Cells , Chick Embryo , Gene Library , In Situ Hybridization , Mesoderm/metabolism , Molecular Sequence Data , Morphogenesis
SELECTION OF CITATIONS
SEARCH DETAIL