Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
Foods ; 11(9)2022 May 03.
Article in English | MEDLINE | ID: mdl-35564051

ABSTRACT

Cod liver oil (CLO) is an essential source of healthy ω-3 fatty acids to be employed in functional meals. However, its autoxidation sensitivity, solubility, and odour present it as challenging to handle. Its encapsulation might mitigate these problems. This research studied using alginate/lupine protein as a wall material for CLO encapsulation as well as to characterise CLO microcapsules for their size, sphericity factor, encapsulation efficiency, morphology (scanning electron microscopy), in vitro release, and thermal stability. In this study, the oxidative stability, quality parameters, and sensory attributes of meatballs enriched with free CLOs and encapsulated CLOs throughout storage at 4 ± 1 °C for 16 days were assessed. The CLO microspheres had a homogeneous round shape, a diameter of 0.82 ± 0.06 mm, a sphericity factor of 0.092 ± 0.01, an encapsulation efficiency of 95.62% ± 1.13%, and an accumulative release rate of 87.10% after 270 min in the stimulated gastrointestinal conditions. Additionally, it was discovered that encapsulated oil was more stable than free CLOs to heat treatments (70-100 °C, 24 h). pH, thiobarbituric acid-reactive substances, peroxide value, conjugated dienes value, and carbonyl content of meatballs enriched with microencapsulated CLOs were significantly lower when compared to free CLOs and/or control samples. CLO microcapsules improved the sensory characteristics of meatballs throughout storage; however, meatballs directly containing CLOs were rejected. Thus, the viability of alginate/LPI complex microcapsules containing CLOs to enrich meat products subjected to storage with refrigeration could be indicated without any change in the characteristics.

2.
Foods ; 11(5)2022 Feb 27.
Article in English | MEDLINE | ID: mdl-35267340

ABSTRACT

Azolla might be considered an alternative and promising dietary ingredient for antioxidants. There have not been any reports on the incorporation of free Azolla fern powder (FAP) or its microcapsules in foods, especially fresh pasta, yet. Microencapsulation was used to mask the undesirable taste and odour of Azolla, as well as to preserve its antioxidant potential. The current study concentrated on two major goals. The first goal was to use alginate as a wall material for FAP encapsulation, as well as to characterise the FAP microcapsule for its encapsulation efficiency, solubility, and thermal stability. The second goal was to assess the impact of integrating FAP or its microcapsules into fresh macaroni on its colour parameters, cooking quality, texture properties, and sensory characteristics. The microspheres had a high encapsulation efficiency (88.19%) and a low water solubility (85.23 g/kg), making them suitable for use in foods that require cooking in water. When compared to free Azolla powder, encapsulation reduced the antioxidant activity loss rate by 67.73%. All the cooking and textural properties of fresh macaroni were not significantly affected, except for water absorption and weight gain, but the overall acceptability index (85.13%) was not affected by microcapsule incorporation.

SELECTION OF CITATIONS
SEARCH DETAIL