Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 319
Filter
1.
Front Sports Act Living ; 6: 1444655, 2024.
Article in English | MEDLINE | ID: mdl-39267813

ABSTRACT

Introduction: Shooting simulations provide an excellent opportunity to train use-of-force decisions in controlled environments. Recently, military and law enforcement organizations have expressed a growing desire to integrate physiological measurement into simulations for training and feedback purposes. Although participants can easily wear physiological monitors in these scenarios, direct implementation into training may not be simple. Theoretical problems exist in the ultra-short heart rate variability windows associated with use-of-force training, and practical problems emerge as existing scenario libraries at training organizations were not designed for physiological monitoring. Methods: The current study explored the challenges and possibilities associated with direct implementation of physiological monitoring into an existing library of firearms training scenarios. Participants completed scenarios in a shooting simulator using existing military training scenarios while wearing a device to monitor their heart rate. Results: The results revealed lower heart rate variability (approximately 6%) occurred in scenarios where participants did not have to fire weapons, indicating that don't-shoot scenarios may actually impose more cognitive stress on shooters. Additional evidence further demonstrated how both behavioral and physiological factors could be used concomitantly to predict unintentionally firing on non-hostile actors. However, behavioral measures were more predictive (e.g., ß = .221) than physiological measures (e.g., ß = -.132) when the latter metrics were limited to specific scenarios. Qualitative results suggest that simply applying physiological monitoring to existing shooting simulations may not yield optimal results because it would be difficult to directly integrate physiological measurement in a meaningful way without re-designing some elements of the simulations, the training procedure, or both. Discussion: Future use-of-force shooting simulations should consider designing novel scenarios around the physiological measurement rather than directly implementing physiological assessments into existing libraries of scenarios.

2.
Mil Med ; 189(Supplement_3): 196-204, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39160861

ABSTRACT

INTRODUCTION: Winter warfare training (WWT) is a critical component of military training that trains warfighters to operate effectively in extreme environments impacted by snow and mountainous terrain. These environmental factors can exacerbate the disruption to the hormone milieu associated with operating in multi-stressor settings. To date, there is limited research on the physiological responses and adaptations that occur in elite military populations training in arduous environments. The purpose of this study was to quantify hormone responses and adaptations in operators throughout WWT. MATERIALS AND METHODS: Participants engaged in baseline laboratory metrics at their home station, Fort Carson, located in Colorado (CO) prior to WWT, for one week in Montana (MT) and one week in Alaska (AK). WWT periods were separated by approximately one month. Blood was collected upon wake at baseline (CO) and on the first and last day of WWT at each location (MT and AK). Plasma was analyzed for stress, metabolic, and growth-related hormones via enzyme-linked immunoassay (ELISA). Sleep quality was assessed via the Pittsburg Sleep Quality Index (PSQI) at baseline (CO) and on the first day of training in MT and AK. Cognitive function was evaluated using the Defense Automated Neurobehavioral Assessment (DANA) at baseline (CO) and on the first and last day of WWT in both MT and AK. RESULTS: Fourteen US Army operators in 10th Special Forces Group (SFG) Operational Detachment participated in winter warfare training (WWT; age: 31.5 years; 95%CI[28.1, 34.3]; height: 180.6 cm; 95%CI[177.3, 183.4]; weight: 87.4 kg.; 95%CI[80.6, 97.7]; body fat: 18.9%; 95%CI[13.7, 23.1]; male: n=13; female: n=1). Plasma adrenocorticotropic hormone (ACTH) levels increased from baseline (19.9 pg/mL; 95%CI[8.6, 24.2])  to pre-WWT (26.9 pg/mL; 95%CI [16.2, 37]; p=0.004), decreased from pre-  (26.9 pg/mL; 95%CI [16.2, 37]) to post-WWT in MT (22.3 pg/mL; 95% CI [8, 23.7]; p=0.004;), and increased from pre-  (25 pg/mL; 95%CI[ 28.4) to post-WWT (36.6 pg/mL; 95%CI [17.9, 48.9]) in AK (p=0.005). Plasma cortisol levels decreased from pre- (174 ng/mL; 95%CI[106.2, 233.6])  to post-WWT (94.5 ng/mL; 95%CI[54.8, 101.7]) in MT (p=0.001) and, conversely, increased from pre- (123.1 ng/mL; 95%CI[97.5, 143.9]) to post-WWT  (162.8 ng/mL; 95%CI[128, 216.7]) in AK (p<0.001). Alterations in growth-related hormones (insulin-like growth factor 1 [IGF-1], insulin-like growth factor binding protein 3 [IGFBP-3],  and sex hormone binding globulin [SHBG]) were observed throughout WWT (p<0.05). The Total Testosterone / Cortisol ratio (TT / CORT; molar ratio) was lower pre-WWT in MT (0.04; 95%CI[0.01,0.04) compared to baseline in CO (0.07; 95%CI[0.04, 0.07]; p=0.042). Triiodothyronine (T3) levels increased from pre-  (101.7 ng/dL; 95%CI[93.7, 110.4]) to post-WWT  (117.8 ng/dL; 95%CI[105.1, 129.4]) in MT (p=0.042). No differences in sleep quality were reported between locations (CO, MT, and AK). Alterations in cognitive function were exhibited between locations and during WWT in both MT and AK (p<0.05). CONCLUSIONS: Over the course of WWT, elite operators experienced alterations in stress, metabolic, and growth-related hormones, as well as cognitive performance. The increase in stress hormones (i.e., ACTH and cortisol) and reduction in cognitive performance following training in AK are suggestive of heightened physiological strain, despite similarities in physical workload, self-reported sleep quality, and access to nutrition. The variation in hormone levels documented between MT and AK may stem from differences in environmental factors, such as lower temperatures and harsh terrain. Further research is warranted to provide more information on the combined effects of military training in extreme environments on operator health and performance.


Subject(s)
Military Personnel , Humans , Male , Adult , Female , Colorado , Military Personnel/statistics & numerical data , Montana , Alaska , Hydrocortisone/blood , Hydrocortisone/analysis , Stress, Physiological/physiology , Seasons , Adrenocorticotropic Hormone/blood
3.
J Thorac Oncol ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39111731

ABSTRACT

INTRODUCTION: Squamous cell cancer (SqCC) is a lung cancer subtype with few targeted therapy options. Molecular characterization, that is, by next-generation sequencing (NGS), is needed to identify potential targets. Lung Cancer Master Protocol Southwest Oncology Group S1400 enrolled patients with previously treated stage IV or recurrent SqCC to assess NGS biomarkers for therapeutic sub-studies. METHODS: Tumors underwent NGS using Foundation Medicine's FoundationOne research platform, which sequenced the exons and/or introns of 313 cancer-related genes. Mutually exclusive gene set analysis and Selected Events Linked by Evolutionary Conditions across Human Tumors were performed to identify mutually exclusive and co-occurring gene alterations. Comparisons were performed with data on 495 lung SqCC downloaded from The Cancer Genome Atlas. Cox proportional hazards models were used to assess associations between genetic variants and survival. RESULTS: NGS data are reported for 1672 patients enrolled on S1400 between 2014 and 2019. Mutually exclusive gene set analysis identified two non-overlapping sets of mutually exclusive alterations with a false discovery rate of less than 15%: NFE2L2, KEAP1, and PARP4; and CDKN2A and RB1. PARP4, a relatively uncharacterized gene, showed three frequent mutations suggesting functional significance: 3116T>C (I1039T), 3176A>G (Q1059R), and 3509C>T (T1170I). When taken together, NFE2L2 and KEAP1 alterations were associated with poorer survival. CONCLUSIONS: As the largest dataset to date of lung SqCC profiled on a clinical trial, the S1400 NGS dataset establishes a rich resource for biomarker discovery. Mutual exclusivity of PARP4 and NFE2L2 or KEAP1 alterations suggests that PARP4 may have an uncharacterized role in a key pathway known to impact oxidative stress response and treatment resistance.

4.
J Thorac Oncol ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38901648

ABSTRACT

Advances in the multidisciplinary care of early stage resectable NSCLC (rNSCLC) are emerging at an unprecedented pace. Numerous phase 3 trials produced results that have transformed patient outcomes for the better, yet these findings also require important modifications to the patient treatment journey trajectory and reorganization of care pathways. Perhaps, most notably, the need for multispecialty collaboration for this patient population has never been greater. These rapid advances have inevitably left us with important gaps in knowledge for which definitive answers will only become available in several years. To this end, the International Association for the Study of Lung Cancer commissioned a diverse multidisciplinary international expert panel to evaluate the current landscape and provide diagnostic, staging, and therapeutic recommendations for patients with rNSCLC, with particular emphasis on patients with American Joint Committee on Cancer-Union for International Cancer Control TNM eighth edition stages II and III disease. Using a team-based approach, we generated 19 recommendations, of which all but one achieved greater than 85% consensus among panel members. A public voting process was initiated, which successfully validated and provided qualitative nuance to our recommendations. Highlights include the following: (1) the critical importance of a multidisciplinary approach to the evaluation of patients with rNSCLC driven by shared clinical decision-making of a multispecialty team of expert providers; (2) biomarker testing for rNSCLC; (3) a preference for neoadjuvant chemoimmunotherapy for stage III rNSCLC; (4) equipoise regarding the optimal management of patients with stage II between upfront surgery followed by adjuvant therapy and neoadjuvant or perioperative strategies; and (5) the robust preference for adjuvant targeted therapy for patients with rNSCLC and sensitizing EGFR and ALK tumor alterations. Our primary goals were to provide practical recommendations sensitive to the global differences in biology and resources for patients with rNSCLC and to provide expert consensus guidance tailored to the individualized patient needs, goals, and preferences in their cancer care journey as these are areas where physicians must make daily clinical decisions in the absence of definitive data. These recommendations will continue to evolve as the treatment landscape for rNSCLC expands and more knowledge is acquired on the best therapeutic approach in specific patient and disease subgroups.

5.
Nucleic Acids Res ; 52(9): 4799-4817, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38613388

ABSTRACT

Glioblastoma multiforme is a universally lethal brain tumor that largely resists current surgical and drug interventions. Despite important advancements in understanding GBM biology, the invasiveness and heterogeneity of these tumors has made it challenging to develop effective therapies. Therapeutic oligonucleotides-antisense oligonucleotides and small-interfering RNAs-are chemically modified nucleic acids that can silence gene expression in the brain. However, activity of these oligonucleotides in brain tumors remains inadequately characterized. In this study, we developed a quantitative method to differentiate oligonucleotide-induced gene silencing in orthotopic GBM xenografts from gene silencing in normal brain tissue, and used this method to test the differential silencing activity of a chemically diverse panel of oligonucleotides. We show that oligonucleotides chemically optimized for pharmacological activity in normal brain tissue do not show consistent activity in GBM xenografts. We then survey multiple advanced oligonucleotide chemistries for their activity in GBM xenografts. Attaching lipid conjugates to oligonucleotides improves silencing in GBM cells across several different lipid classes. Highly hydrophobic lipid conjugates cholesterol and docosanoic acid enhance silencing but at the cost of higher neurotoxicity. Moderately hydrophobic, unsaturated fatty acid and amphiphilic lipid conjugates still improve activity without compromising safety. These oligonucleotide conjugates show promise for treating glioblastoma.


Subject(s)
Brain Neoplasms , Glioblastoma , Oligonucleotides, Antisense , RNA, Small Interfering , Xenograft Model Antitumor Assays , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/pathology , Animals , RNA, Small Interfering/genetics , RNA, Small Interfering/chemistry , RNA, Small Interfering/metabolism , RNA, Small Interfering/therapeutic use , Humans , Mice , Cell Line, Tumor , Brain Neoplasms/genetics , Oligonucleotides, Antisense/chemistry , Oligonucleotides, Antisense/therapeutic use , Gene Silencing , Mice, Nude
6.
J Strength Cond Res ; 38(8): e454-e458, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38683971

ABSTRACT

ABSTRACT: Schram, B, Orr, R, Niederberger, B, Givens, A, Bernards, J, and Kelly, KR. Cardiovascular demand differences between male and female US Marine recruits during progressive loaded hikes. J Strength Cond Res 38(8): e454-e458, 2024-Despite having to carry the same occupational load, female soldiers tend to be lighter than male soldiers. The aim of this study was to determine the differences in cardiovascular load between female and male US Marine recruits during progressive load carriage hikes. United States Marine Corps recruits (565 male recruits; 364 female recruits) completed 6 loaded hikes over 6 weeks (1: 10 kg, 30 minutes; 2: 10 kg, 45 minutes; 3: 15 kg, 30 minutes, 4: 15 kg, 45 minutes; 5: 20 kg, 30 minutes; 6: 20 kg, 45 minutes) during which cardiovascular response was measured. Average heart rate (HRavg), HR maximum (HRmax), and pace were measured via a wrist-worn physiological monitor. Independent sample t -tests were conducted to compare between sexes, with significance set at 0.008 after adjusting for multiple comparisons. The average female recruit had significantly lower body mass (BM) compared with the average male recruit ( p < 0.001) and thus carried a significantly heavier relative load. (10 kg ∼17%, 15 kg ∼25%, 20 kg ∼33%, p < 0.001). There were no significant differences in pace in any hike, and no significant differences were found in HRavg or HRmax when comparing female and male Marines during Hike 1. For female Marines, HRavg was significantly higher compared with male Marines during Hike 2 (+6.5 b·min -1 , p < 0.001) and Hike 3 (+7.4 b·min -1 , p < 0.001), and both HRavg and HRmax were significantly higher in Hike 4 (+11.9 b·min -1 , +8.4 b·min -1 , p < 0.001), Hike 5 (+7.7 b·min -1 , +7.9 b·min -1 , p < 0.001), and Hike 6 (+6.9 b·min -1 , +7.1 b·min -1 , p < 0.001), respectively. Female Marines endured greater cardiovascular demand compared with male Marines during load carriage events when carrying loads greater than 15 kg (∼25% BM).


Subject(s)
Heart Rate , Military Personnel , Humans , Female , Male , Young Adult , Heart Rate/physiology , Sex Factors , Weight-Bearing/physiology , United States , Adult , Adolescent
8.
Work ; 77(4): 1391-1399, 2024.
Article in English | MEDLINE | ID: mdl-38552130

ABSTRACT

BACKGROUND: Load carriage tasks during United States Marine Corps (USMC) recruit training can cause injury. Load carriage conditioning, if optimized, can reduce injury risk. OBJECTIVE: To compare injuries sustained by USMC recruits following participation in either the Original Load Carriage (OLC) program or a Modified Load Carriage (MLC) program. METHODS: Retrospective musculoskeletal injury data were drawn from the USMC San Diego Sports Medicine injury database for recruits completing the OLC (n = 2,363) and MLC (n = 681) programs. Data were expressed as descriptive statistics and a population estimate of the OLC:MLC relative risk ratio (RR) was calculated. RESULTS: The proportion of injuries sustained in the MLC cohort (n = 268; 39% : OLC cohort, n = 1,372 : 58%) was lower, as was the RR (0.68, 95% CI 0.61- 0.75). The leading nature of injury for both cohorts was sprains and strains (OLC n = 396, 29%; MLC n = 66; 25%). Stress reactions were proportionally higher in MLC (n = 17, 6%; OLC n = 4, 0.3%), while stress fractures were proportionately lower (MLC n = 9, 3%; OLC n = 114, 8%). Overuse injuries were lower in MLC (- 7%). The knee, lower leg, ankle, and foot were the top four bodily sites of injuries and the Small Unit Leadership Evaluation (SULE), Crucible, overuse-nonspecific, running, and conditioning hikes were within the top five most common events causing injury. The prevalence rates of moderate severity injury were similar (MLC = 23%; OLC = 24%), although MLC presented both a higher proportion and prevalence of severe injuries (MLC = 6%; OLC = 3%, respectively). CONCLUSION: A periodized load carriage program concurrently increased exposure to load carriage hikes while reducing injuries both during the load carriage hikes and overall.


Subject(s)
Cumulative Trauma Disorders , Military Personnel , Musculoskeletal Diseases , Sports , Sprains and Strains , Humans , United States/epidemiology , Retrospective Studies , Cumulative Trauma Disorders/etiology , Cumulative Trauma Disorders/complications , Musculoskeletal Diseases/epidemiology , Sprains and Strains/etiology , Sprains and Strains/complications
9.
Work ; 77(4): 1285-1294, 2024.
Article in English | MEDLINE | ID: mdl-38489209

ABSTRACT

BACKGROUND: During periods of high-volume vigorous exercise, United States Marine Corps recruits often experience musculoskeletal injuries. While the program of instruction (POI) for basic training is a defined training volume, the total workload of boot camp, including movements around the base, is unknown. OBJECTIVE: The present study aimed to quantify the daily total workload, energy expenditure, and sleep during basic recruit training at Marine Corps Recruit Depot (MCRD) San Diego. METHODS: Eighty-four male recruits from MCRD San Diego wore wrist wearable physiological monitors to capture their complete workload (mileage from steps), energy expenditure, and sleep throughout the 10-week boot camp. RESULTS: Marine recruits traveled an average of 11.5±3.4 miles per day (M±SD), expended 4105±823 kcal per day, and slept an average of 5 : 48±1 : 06 hours and minutes per night. While the POI designates a total of 46.3 miles of running and hiking, the actual daily average miles yielded approximately 657.6±107.2 miles over the 10-week boot camp. CONCLUSION: Recruit training requires high physical demand and time under tension due to the cumulative volume of movements around base in addition to the POI planned physical training.


Subject(s)
Military Personnel , Workload , Humans , Male , United States , Exercise , Energy Metabolism
10.
Nat Commun ; 15(1): 1458, 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38368418

ABSTRACT

Nme2Cas9 has been established as a genome editing platform with compact size, high accuracy, and broad targeting range, including single-AAV-deliverable adenine base editors. Here, we engineer Nme2Cas9 to further increase the activity and targeting scope of compact Nme2Cas9 base editors. We first use domain insertion to position the deaminase domain nearer the displaced DNA strand in the target-bound complex. These domain-inlaid Nme2Cas9 variants exhibit shifted editing windows and increased activity in comparison to the N-terminally fused Nme2-ABE. We next expand the editing scope by swapping the Nme2Cas9 PAM-interacting domain with that of SmuCas9, which we had previously defined as recognizing a single-cytidine PAM. We then use these enhancements to introduce therapeutically relevant edits in a variety of cell types. Finally, we validate domain-inlaid Nme2-ABEs for single-AAV delivery in vivo.


Subject(s)
Adenine , CRISPR-Associated Protein 9 , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , Adenine/metabolism , Gene Editing , DNA/genetics , CRISPR-Cas Systems
11.
Clin Cancer Res ; 30(8): 1655-1668, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38277235

ABSTRACT

PURPOSE: Identifying molecular and immune features to guide immune checkpoint inhibitor (ICI)-based regimens remains an unmet clinical need. EXPERIMENTAL DESIGN: Tissue and longitudinal blood specimens from phase III trial S1400I in patients with metastatic squamous non-small cell carcinoma (SqNSCLC) treated with nivolumab monotherapy (nivo) or nivolumab plus ipilimumab (nivo+ipi) were subjected to multi-omics analyses including multiplex immunofluorescence (mIF), nCounter PanCancer Immune Profiling Panel, whole-exome sequencing, and Olink. RESULTS: Higher immune scores from immune gene expression profiling or immune cell infiltration by mIF were associated with response to ICIs and improved survival, except regulatory T cells, which were associated with worse overall survival (OS) for patients receiving nivo+ipi. Immune cell density and closer proximity of CD8+GZB+ T cells to malignant cells were associated with superior progression-free survival and OS. The cold immune landscape of NSCLC was associated with a higher level of chromosomal copy-number variation (CNV) burden. Patients with LRP1B-mutant tumors had a shorter survival than patients with LRP1B-wild-type tumors. Olink assays revealed soluble proteins such as LAMP3 increased in responders while IL6 and CXCL13 increased in nonresponders. Upregulation of serum CXCL13, MMP12, CSF-1, and IL8 were associated with worse survival before radiologic progression. CONCLUSIONS: The frequency, distribution, and clustering of immune cells relative to malignant ones can impact ICI efficacy in patients with SqNSCLC. High CNV burden may contribute to the cold immune microenvironment. Soluble inflammation/immune-related proteins in the blood have the potential to monitor therapeutic benefit from ICI treatment in patients with SqNSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Carcinoma, Squamous Cell , Lung Neoplasms , Humans , Nivolumab , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Multiomics , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/genetics , Immunotherapy , Lung/pathology , Epithelial Cells/pathology , Ipilimumab/therapeutic use , Tumor Microenvironment
12.
J Thorac Oncol ; 19(1): 94-105, 2024 01.
Article in English | MEDLINE | ID: mdl-37595684

ABSTRACT

INTRODUCTION: With global adoption of computed tomography (CT) lung cancer screening, there is increasing interest to use artificial intelligence (AI) deep learning methods to improve the clinical management process. To enable AI research using an open-source, cloud-based, globally distributed, screening CT imaging data set and computational environment that are compliant with the most stringent international privacy regulations that also protect the intellectual properties of researchers, the International Association for the Study of Lung Cancer sponsored development of the Early Lung Imaging Confederation (ELIC) resource in 2018. The objective of this report is to describe the updated capabilities of ELIC and illustrate how this resource can be used for clinically relevant AI research. METHODS: In this second phase of the initiative, metadata and screening CT scans from two time points were collected from 100 screening participants in seven countries. An automated deep learning AI lung segmentation algorithm, automated quantitative emphysema metrics, and a quantitative lung nodule volume measurement algorithm were run on these scans. RESULTS: A total of 1394 CTs were collected from 697 participants. The LAV950 quantitative emphysema metric was found to be potentially useful in distinguishing lung cancer from benign cases using a combined slice thickness more than or equal to 2.5 mm. Lung nodule volume change measurements had better sensitivity and specificity for classifying malignant from benign lung nodules when applied to solid lung nodules from high-quality CT scans. CONCLUSIONS: These initial experiments revealed that ELIC can support deep learning AI and quantitative imaging analyses on diverse and globally distributed cloud-based data sets.


Subject(s)
Deep Learning , Emphysema , Lung Neoplasms , Humans , Lung Neoplasms/pathology , Artificial Intelligence , Early Detection of Cancer , Lung/pathology , Emphysema/pathology
13.
Nucleic Acids Res ; 52(2): 977-997, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38033325

ABSTRACT

Guide RNAs offer programmability for CRISPR-Cas9 genome editing but also add challenges for delivery. Chemical modification, which has been key to the success of oligonucleotide therapeutics, can enhance the stability, distribution, cellular uptake, and safety of nucleic acids. Previously, we engineered heavily and fully modified SpyCas9 crRNA and tracrRNA, which showed enhanced stability and retained activity when delivered to cultured cells in the form of the ribonucleoprotein complex. In this study, we report that a short, fully stabilized oligonucleotide (a 'protecting oligo'), which can be displaced by tracrRNA annealing, can significantly enhance the potency and stability of a heavily modified crRNA. Furthermore, protecting oligos allow various bioconjugates to be appended, thereby improving cellular uptake and biodistribution of crRNA in vivo. Finally, we achieved in vivo genome editing in adult mouse liver and central nervous system via co-delivery of unformulated, chemically modified crRNAs with protecting oligos and AAV vectors that express tracrRNA and either SpyCas9 or a base editor derivative. Our proof-of-concept establishment of AAV/crRNA co-delivery offers a route towards transient editing activity, target multiplexing, guide redosing, and vector inactivation.


Subject(s)
Gene Editing , RNA, Guide, CRISPR-Cas Systems , Animals , Mice , Tissue Distribution , RNA/genetics , Oligonucleotides
14.
J Sports Sci Med ; 22(4): 658-666, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38045749

ABSTRACT

Wearables are lightweight, portable technology devices that are traditionally used to monitor physical activity and workload as well as basic physiological parameters such as heart rate. However recent advances in monitors have enabled better algorithms for estimation of caloric expenditure from heart rate for use in weight loss as well as sport performance. can be used for estimating energy expenditure and nutritional demand. Recently, the military has adopted the use of personal wearables for utilization in field studies for ecological validity of training. With popularity of use, the need for validation of these devices for caloric estimates is needed to assist in work-rest cycles. Thus the purpose of this effort was to evaluate the Polar Grit X for energy expenditure (EE) for use in military training exercises. Polar Grit X Pro watches were worn by active-duty elite male operators (N = 16; age: 31.7 ± 5.0 years, height: 180.1 ± 6.2 cm, weight: 91.7 ± 9.4 kg). Metrics were measured against indirect calorimetry of a metabolic cart and heart rate via a Polar heart rate monitor chest strap while exercising on a treadmill. Participants each performed five 10-minute bouts of running at a self-selected speed and incline to maintain a heart rate within one of five heart rate zones, as ordered and defined by Polar. Polar Grit X Pro watch had a good to excellent interrater reliability to indirect calorimetry at estimating energy expenditure (ICC = 0.8, 95% CI = 0.61-0.89, F (74,17.3) = 11.76, p < 0.0001) and a fair to good interrater reliability in estimating macronutrient partitioning (ICC = 0.49, 95% CI = 0.3-0.65, F (74,74.54) = 2.98, p < 0.0001). There is a strong relationship between energy expenditure as estimated from the Polar Grit X Pro and measured through indirect calorimetry. The Polar Grit X Pro watch is a suitable tool for estimating energy expenditure in free-living participants in a field setting and at a range of exercise intensities.


Subject(s)
Military Personnel , Humans , Male , Adult , Pilot Projects , Reproducibility of Results , Exercise/physiology , Energy Metabolism/physiology
15.
CRISPR J ; 6(6): 570-582, 2023 12.
Article in English | MEDLINE | ID: mdl-38108517

ABSTRACT

CRISPR-based genome-editing technologies, including nuclease editing, base editing, and prime editing, have recently revolutionized the development of therapeutics targeting disease-causing mutations. To advance the assessment and development of genome editing tools, a robust mouse model is valuable, particularly for evaluating in vivo activity and delivery strategies. In this study, we successfully generated a knock-in mouse line carrying the Traffic Light Reporter design known as TLR-multi-Cas variant 1 (TLR-MCV1). We comprehensively validated the functionality of this mouse model for both in vitro and in vivo nuclease and prime editing. The TLR-MCV1 reporter mouse represents a versatile and powerful tool for expediting the development of editing technologies and their therapeutic applications.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Animals , Mice , CRISPR-Cas Systems/genetics , Disease Models, Animal , Endonucleases/genetics , Technology
17.
bioRxiv ; 2023 Oct 29.
Article in English | MEDLINE | ID: mdl-37904991

ABSTRACT

Prime editing efficiency is modest in cells that are quiescent or slowly proliferating where intracellular dNTP levels are tightly regulated. MMLV-reverse transcriptase - the prime editor polymerase subunit - requires high intracellular dNTPs levels for efficient polymerization. We report that prime editing efficiency in primary cells and in vivo is increased by mutations that enhance the enzymatic properties of MMLV-reverse transcriptase and can be further complemented by targeting SAMHD1 for degradation.

18.
JCO Precis Oncol ; 7: e2300218, 2023 09.
Article in English | MEDLINE | ID: mdl-37677122

ABSTRACT

PURPOSE: Lung Cancer Master Protocol (Lung-MAP), a public-private partnership, established infrastructure for conducting a biomarker-driven master protocol in molecularly targeted therapies. We compared characteristics of patients enrolled in Lung-MAP with those of patients in advanced non-small-cell lung cancer (NSCLC) trials to examine if master protocols improve trial access. METHODS: We examined patients enrolled in Lung-MAP (2014-2020) according to sociodemographic characteristics. Proportions for characteristics were compared with those for a set of advanced NSCLC trials (2001-2020) and the US advanced NSCLC population using SEER registry data (2014-2018). Characteristics of patients enrolled in Lung-MAP treatment substudies were examined in subgroup analysis. Two-sided tests of proportions at an alpha of .01 were used for all comparisons. RESULTS: A total of 3,556 patients enrolled in Lung-MAP were compared with 2,215 patients enrolled in other NSCLC studies. Patients enrolled in Lung-MAP were more likely to be 65 years and older (57.2% v 46.3%; P < .0001), from rural areas (17.3% v 14.4%; P = .004), and from socioeconomically deprived neighborhoods (42.2% v 36.7%, P < .0001), but less likely to be female (38.6% v 47.2%; P < .0001), Asian (2.8% v 5.1%; P < .0001), or Hispanic (2.4% v 3.8%; P = .003). Among patients younger than 65 years, Lung-MAP enrolled more patients using Medicaid/no insurance (27.6% v 17.8%; P < .0001). Compared with the US advanced NSCLC population, Lung-MAP under represented patients 65 years and older (57.2% v 69.8%; P < .0001), females (38.6% v 46.0%; P < .0001), and racial or ethnic minorities (14.8% v 21.5%; P < .0001). CONCLUSION: Master protocols may improve access to trials using novel therapeutics for older patients and socioeconomically vulnerable patients compared with conventional trials, but specific patient exclusion criteria influenced demographic composition. Further research examining participation barriers for under represented racial or ethnic minorities in precision medicine clinical trials is warranted.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , United States/epidemiology , Humans , Female , Male , Lung Neoplasms/therapy , Carcinoma, Non-Small-Cell Lung/therapy , Molecular Targeted Therapy , Patients , Lung
19.
Cell Rep ; 42(10): 113182, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37776519

ABSTRACT

Cytotoxic CD4 T cell effectors (ThCTLs) kill virus-infected major histocompatibility complex (MHC) class II+ cells, contributing to viral clearance. We identify key factors by which influenza A virus infection drives non-cytotoxic CD4 effectors to differentiate into lung tissue-resident ThCTL effectors. We find that CD4 effectors must again recognize cognate antigen on antigen-presenting cells (APCs) within the lungs. Both dendritic cells and B cells are sufficient as APCs, but CD28 co-stimulation is not needed. Optimal generation of ThCTLs requires signals induced by the ongoing infection independent of antigen presentation. Infection-elicited type I interferon (IFN) induces interleukin-15 (IL-15), which, in turn, supports CD4 effector differentiation into ThCTLs. We suggest that these multiple spatial, temporal, and cellular requirements prevent excessive lung ThCTL responses when virus is already cleared but ensure their development when infection persists. This supports a model where continuing infection drives the development of multiple, more differentiated subsets of CD4 effectors by distinct pathways.


Subject(s)
Antineoplastic Agents , Interferon Type I , Interleukin-15 , CD4-Positive T-Lymphocytes , Histocompatibility Antigens Class II/metabolism , T-Lymphocytes, Cytotoxic , Antigens
20.
Nat Commun ; 14(1): 5332, 2023 09 02.
Article in English | MEDLINE | ID: mdl-37658083

ABSTRACT

Stereotactic ablative radiotherapy (SABR) is a standard-of-care for medically-inoperable-early-stage non-small cell lung cancer (NSCLC). One third of patients progress and chemotherapy is rarely used in this population. We questioned if addition of the immune-checkpoint-inhibitor (ICI) atezolizumab to standard-of-care SABR can improve outcomes. We initiated a multi-institutional single-arm phase I study (NCT02599454) enrolling twenty patients with the primary endpoint of maximum tolerated dose (MTD); secondary endpoints of safety and efficacy; and exploratory mechanistic correlatives. Treatment is well tolerated and full dose atezolizumab (1200 mg) is the MTD. Efficacy signals include early responses (after 2 cycles of ICI, before initiation of SABR) in 17% of patients. Biomarkers of functional adaptive immunity, including T cell activation in the tumor and response to ex-vivo stimulation by circulating T cells, are highly predictive of benefit. These results require validation and are being tested in a phase III randomized trial.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Radiosurgery , Small Cell Lung Carcinoma , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/radiotherapy , Lung Neoplasms/drug therapy , Lung Neoplasms/radiotherapy
SELECTION OF CITATIONS
SEARCH DETAIL