Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters








Database
Language
Publication year range
1.
Heliyon ; 5(3): e01424, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30976696

ABSTRACT

Fe-based metallic glasses (also called amorphous alloys) are known to have high hardness and high wear resistance. Here we study and present a Fe-Nb amorphous material with an unusual type of electrical conductivity behavior. The electrical transport properties of Fe-Nb oxide layers were studied by measuring local current-voltage characteristics by the atomic-force microscopy technique. At certain voltage levels the samples containing native oxides showed clearly asymmetrical conductivity relative to polarity of the applied potential. Fe-Nb metallic glassy surface oxide film growth process was monitored at ambient conditions. The growth rate keeps constant during the initial 2.5 hours. After that the growth rate drastically decreases and becomes almost zero while the final oxide thickness is 1.0-1.5 nm. The Fe-Nb film sample annealed for 15 minutes at 300 °C demonstrates several times larger oxide thickness and becomes an insulator. X-ray photoelectron spectroscopy was used to characterize the oxidation states in the surface amorphous oxides. This material can be readily applied as inexpensive nanoscale tunnel diode operating at the commonly utilized voltage of ±5 V.

2.
Nature ; 524(7564): 200-3, 2015 Aug 13.
Article in English | MEDLINE | ID: mdl-26268190

ABSTRACT

When a spatially uniform temperature change is imposed on a solid with more than one phase, or on a polycrystal of a single, non-cubic phase (showing anisotropic expansion-contraction), the resulting thermal strain is inhomogeneous (non-affine). Thermal cycling induces internal stresses, leading to structural and property changes that are usually deleterious. Glasses are the solids that form on cooling a liquid if crystallization is avoided--they might be considered the ultimate, uniform solids, without the microstructural features and defects associated with polycrystals. Here we explore the effects of cryogenic thermal cycling on glasses, specifically metallic glasses. We show that, contrary to the null effect expected from uniformity, thermal cycling induces rejuvenation, reaching less relaxed states of higher energy. We interpret these findings in the context that the dynamics in liquids become heterogeneous on cooling towards the glass transition, and that there may be consequent heterogeneities in the resulting glasses. For example, the vibrational dynamics of glassy silica at long wavelengths are those of an elastic continuum, but at wavelengths less than approximately three nanometres the vibrational dynamics are similar to those of a polycrystal with anisotropic grains. Thermal cycling of metallic glasses is easily applied, and gives improvements in compressive plasticity. The fact that such effects can be achieved is attributed to intrinsic non-uniformity of the glass structure, giving a non-uniform coefficient of thermal expansion. While metallic glasses may be particularly suitable for thermal cycling, the non-affine nature of strains in glasses in general deserves further study, whether they are induced by applied stresses or by temperature change.

3.
Sci Rep ; 3: 2798, 2013 Oct 08.
Article in English | MEDLINE | ID: mdl-24100784

ABSTRACT

Metallic glasses due to their unique combination of physical and chemical properties have a great potential in various applications: materials for construction, medical, MEMs devices and so on. The deformation mechanism in metallic glasses is very much different from that in conventional crystalline materials and not yet fully understood. Here we are trying to find out what drives shear deformation in metallic glasses. The compression experiments of the bulk metallic glassy (BMG) samples coated with tin, Rose metal and indium were performed. There were no melting sites of the coating observed near individual shear bands. Melting occurred only near fracture surface, near microcracks and in the places of shear band concentrations. The results indicate that shear banding is rather a stress driven process while the temperature rise that was observed takes place due to friction forces in the viscous supercooled liquid thin layer in the shear bands.

SELECTION OF CITATIONS
SEARCH DETAIL