Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
Sci Adv ; 10(40): eadp5491, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39356758

ABSTRACT

The PP2A-B55 phosphatase regulates a plethora of signaling pathways throughout eukaryotes. How PP2A-B55 selects its substrates presents a severe knowledge gap. By integrating AlphaFold modeling with comprehensive high-resolution mutational scanning, we show that α helices in substrates bind B55 through an evolutionary conserved mechanism. Despite a large diversity in sequence and composition, these α helices share key amino acid determinants that engage discrete hydrophobic and electrostatic patches. Using deep learning protein design, we generate a specific and potent competitive peptide inhibitor of PP2A-B55 substrate interactions. With this inhibitor, we uncover that PP2A-B55 regulates the nuclear exosome targeting (NEXT) complex by binding to an α-helical recruitment module in the RNA binding protein 7 (RBM7), a component of the NEXT complex. Collectively, our findings provide a framework for the understanding and interrogation of PP2A-B55 function in health and disease.


Subject(s)
Protein Binding , Protein Phosphatase 2 , Protein Phosphatase 2/metabolism , Protein Phosphatase 2/chemistry , Substrate Specificity , Humans , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/chemistry , Models, Molecular , Amino Acid Sequence
2.
bioRxiv ; 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39386444

ABSTRACT

Despite adjuvant treatment with endocrine therapies, estrogen receptor-positive (ER+) breast cancers recur in a significant proportion of patients. Recurrences are attributable to clinically undetectable endocrine-tolerant persister cancer cells that retain tumor-forming potential. Therefore, strategies targeting such persister cells may prevent recurrent disease. Using CRISPR-Cas9 genome-wide knockout screening in ER+ breast cancer cells, we identified a survival mechanism involving metabolic reprogramming with reliance upon mitochondrial respiration in endocrine-tolerant persister cells. Quantitative proteomic profiling showed reduced levels of glycolytic proteins in persisters. Metabolic tracing of glucose revealed an energy-depleted state in persisters where oxidative phosphorylation was required to generate ATP. A phase II clinical trial was conducted to evaluate changes in mitochondrial markers in primary ER+/HER2-breast tumors induced by neoadjuvant endocrine therapy ( NCT04568616 ). In an analysis of tumor specimens from 32 patients, tumors exhibiting residual cell proliferation after aromatase inhibitor-induced estrogen deprivation with letrozole showed increased mitochondrial content. Genetic profiling and barcode lineage tracing showed that endocrine-tolerant persistence occurred stochastically without genetic predisposition. Mice bearing cell line- and patient-derived xenografts were used to measure the anti-tumor effects of mitochondrial complex I inhibition in the context of endocrine therapy. Pharmacological inhibition of complex I suppressed the tumor-forming potential of persisters and synergized with the anti-estrogen fulvestrant to induce regression of patient-derived xenografts. These findings indicate that mitochondrial metabolism is essential in endocrine-tolerant persister ER+ breast cancer cells and warrant the development of treatment strategies to leverage this vulnerability in the context of endocrine-sensitive disease. Statement of Significance: Endocrine-tolerant persister cancer cells that survive endocrine therapy can cause recurrent disease. Persister cells exhibit increased energetic dependence upon mitochondria for survival and tumor re-growth potential.

3.
bioRxiv ; 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39386702

ABSTRACT

Ribonucleoprotein complexes are dynamic assemblies of RNA with RNA-binding proteins (RBPs), which can modulate the fate of the RNA molecules from transcription to degradation. Vice versa, RNA can regulate the interactions and functions of the associated proteins. Dysregulation of RBPs is linked to diseases such as cancer and neurological disorders. RNA and RBPs are present in mitotic structures like the centrosomes and spindle microtubules, but their influence on mitotic spindle integrity remains unknown. Thus, we applied the R-DeeP strategy for the proteome-wide identification of RNA-dependent proteins and complexes to cells synchronized in mitosis versus interphase. The resulting atlas of RNA-dependent proteins in cell division can be accessed through the R-DeeP 3.0 database (R-DeeP3.dkfz.de). It revealed key mitotic factors as RNA-dependent such as AURKA, KIFC1 and TPX2 that were linked to RNA despite their lack of canonical RNA-binding domains. KIFC1 was identified as a new interaction partner and phosphorylation substrate of AURKA at S 349 and T 359 . In addition, KIFC1 interacted with both, AURKA and TPX2, in an RNA-dependent manner. Our data suggest a riboregulation of mitotic protein-protein interactions during spindle assembly, offering new perspectives on the control of cell division processes by RNA-protein complexes. Highlights: Differential R-DeeP screens in mitosis and interphase are provided as a resource in a user-friendly database at R-DeeP3.dkfz.deAn atlas of RNA-dependent proteins in cell division identifies a substantial number of unconventional RNA-binding proteins among mitotic factorsInvestigation of protein-protein interactions reveals KIFC1 as a new AURKA and TPX2 interaction partner during spindle assemblyKIFC1, AURKA and TPX2 interact with each other in an RNA-dependent manner and directly bind to RNA AURKA phosphorylates KIFC1 at residues S 349 and T 359.

4.
bioRxiv ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39091813

ABSTRACT

The one-cell C. elegans embryo undergoes an asymmetric cell division during which germline factors such as the RNA-binding proteins POS-1 and MEX-1 segregate to the posterior cytoplasm, leading to their asymmetric inheritance to the posterior germline daughter cell. Previous studies found that the RNA-binding protein MEX-5 recruits polo-like kinase PLK-1 to the anterior cytoplasm where PLK-1 inhibits the retention of its substrate POS-1, leading to POS-1 segregation to the posterior. In this study, we tested whether PLK-1 similarly regulates MEX-1 polarization. We find that both the retention of MEX-1 in the anterior and the segregation of MEX-1 to the posterior depend on PLK kinase activity and on the interaction between MEX-5 and PLK-1. Human PLK1 directly phosphorylates recombinant MEX-1 on 9 predicted PLK-1 sites in vitro, four of which were identified in previous phosphoproteomic analysis of C. elegans embryos. The introduction of alanine substitutions at these four PLK-1 phosphorylation sites (MEX-1(4A)) significantly weakened the inhibition of MEX-1 retention in the anterior, thereby weakening MEX-1 segregation to the posterior. In contrast, mutation of a predicted CDK1 phosphorylation site had no effect on MEX-1 retention or on MEX-1 segregation. MEX-1(4A) mutants are viable and fertile but display significant sterility and fecundity defects at elevated temperatures. Taken together with our previous findings, these findings suggest PLK-1 phosphorylation drives both MEX-1 and POS-1 polarization during the asymmetric division of the zygote.

5.
Nat Commun ; 15(1): 5776, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38982062

ABSTRACT

The Ser/Thr protein phosphatase 2 A (PP2A) regulates the dephosphorylation of many phosphoproteins. Substrate recognition are mediated by B regulatory subunits. Here, we report the identification of a substrate conserved motif [RK]-V-x-x-[VI]-R in FAM122A, an inhibitor of B55α/PP2A. This motif is necessary for FAM122A binding to B55α, and computational structure prediction suggests the motif, which is helical, blocks substrate docking to the same site. In this model, FAM122A also spatially constrains substrate access by occluding the catalytic subunit. Consistently, FAM122A functions as a competitive inhibitor as it prevents substrate binding and dephosphorylation of CDK substrates by B55α/PP2A in cell lysates. FAM122A deficiency in human cell lines reduces the proliferation rate, cell cycle progression, and hinders G1/S and intra-S phase cell cycle checkpoints. FAM122A-KO in HEK293 cells attenuates CHK1 and CHK2 activation in response to replication stress. Overall, these data strongly suggest that FAM122A is a short helical motif (SHeM)-dependent, substrate-competitive inhibitor of B55α/PP2A that suppresses multiple functions of B55α in the DNA damage response and in timely progression through the cell cycle interphase.


Subject(s)
Amino Acid Motifs , Interphase , Protein Phosphatase 2 , Humans , Cell Cycle Checkpoints/genetics , Cell Proliferation , Checkpoint Kinase 1/metabolism , Checkpoint Kinase 1/genetics , Checkpoint Kinase 2/metabolism , Checkpoint Kinase 2/genetics , HEK293 Cells , Phosphorylation , Protein Binding , Protein Phosphatase 2/metabolism , Protein Phosphatase 2/genetics
6.
J Biol Chem ; 300(8): 107508, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38944116

ABSTRACT

In the Neurospora circadian system, the White Collar Complex (WCC) formed by WC-1 and WC-2 drives expression of the frequency (frq) gene whose product FRQ feedbacks to inhibit transcriptional activity of WCC. Phosphorylation of WCC has been extensively studied, but the extent and significance of other post-translational modifications (PTM) have been poorly studied. To this end, we used mass-spectrometry to study alkylation sites on WCC, resulting in discovery of nine acetylation sites. Mutagenesis analysis showed most of the acetylation events individually do not play important roles in period determination. Moreover, mutating all the lysines falling in either half of WC-1 or all the lysine residues in WC-2 to arginines did not abolish circadian rhythms. In addition, we also found nine mono-methylation sites on WC-1, but like acetylation, individual ablation of most of the mono-methylation events did not result in a significant period change. Taken together, the data here suggest that acetylation or mono-methylation on WCC is not a determinant of the pace of the circadian feedback loop. The finding is consistent with a model in which repression of WCC's circadian activity is mainly controlled by phosphorylation. Interestingly, light-induced expression of some light-responsive genes has been modulated in certain wc-1 acetylation mutants, suggesting that WC-1 acetylation events differentially regulate light responses.


Subject(s)
Circadian Clocks , Fungal Proteins , Acetylation , Fungal Proteins/metabolism , Fungal Proteins/genetics , Neurospora crassa/metabolism , Neurospora crassa/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Light , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Protein Processing, Post-Translational , Circadian Rhythm/physiology , Gene Expression Regulation, Fungal , Methylation , Phosphorylation
7.
Nat Commun ; 15(1): 5359, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918402

ABSTRACT

SDS22 forms an inactive complex with nascent protein phosphatase PP1 and Inhibitor-3. SDS22:PP1:Inhibitor-3 is a substrate for the ATPase p97/VCP, which liberates PP1 for binding to canonical regulatory subunits. The exact role of SDS22 in PP1-holoenzyme assembly remains elusive. Here, we show that SDS22 stabilizes nascent PP1. In the absence of SDS22, PP1 is gradually lost, resulting in substrate hyperphosphorylation and a proliferation arrest. Similarly, we identify a female individual with a severe neurodevelopmental disorder bearing an unstable SDS22 mutant, associated with decreased PP1 levels. We furthermore find that SDS22 directly binds to Inhibitor-3 and that this is essential for the stable assembly of SDS22:PP1: Inhibitor-3, the recruitment of p97/VCP, and the extraction of SDS22 during holoenzyme assembly. SDS22 with a disabled Inhibitor-3 binding site co-transfers with PP1 to canonical regulatory subunits, thereby forming non-functional holoenzymes. Our data show that SDS22, through simultaneous interaction with PP1 and Inhibitor-3, integrates the major steps of PP1 holoenzyme assembly.


Subject(s)
Protein Phosphatase 1 , Female , Humans , HEK293 Cells , Holoenzymes/metabolism , Phosphorylation , Protein Binding , Protein Phosphatase 1/metabolism , Protein Phosphatase 1/genetics , Valosin Containing Protein/metabolism , Valosin Containing Protein/genetics
8.
Cancers (Basel) ; 16(5)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38473207

ABSTRACT

Estrogen receptor alpha (ER)-positive breast cancer is responsible for over 60% of breast cancer cases in the U.S. Among patients diagnosed with early-stage ER+ disease, 1/3 will experience recurrence despite treatment with adjuvant endocrine therapy. ER is a nuclear hormone receptor responsible for estrogen-driven tumor growth. ER transcriptional activity is modulated by interactions with coregulators. Dysregulation of the levels of these coregulators is involved in the development of endocrine resistance. To identify ER interactors that modulate transcriptional activity in breast cancer, we utilized biotin ligase proximity profiling of ER interactomes. Mass spectrometry analysis revealed tripartite motif containing 33 (TRIM33) as an estrogen-dependent interactor of ER. shRNA knockdown showed that TRIM33 promoted ER transcriptional activity and estrogen-induced cell growth. Despite its known role as an E3 ubiquitin ligase, TRIM33 increased the stability of endogenous ER in breast cancer cells. TRIM33 offers a novel target for inhibiting estrogen-induced cancer cell growth, particularly in cases of endocrine resistance driven by ER (ESR1) gene amplification or overexpression.

9.
Sci Adv ; 10(5): eadg7887, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38295166

ABSTRACT

Protein tyrosine phosphatases (PTPs) play major roles in cancer and are emerging as therapeutic targets. Recent reports suggest low-molecular weight PTP (LMPTP)-encoded by the ACP1 gene-is overexpressed in prostate tumors. We found ACP1 up-regulated in human prostate tumors and ACP1 expression inversely correlated with overall survival. Using CRISPR-Cas9-generated LMPTP knockout C4-2B and MyC-CaP cells, we identified LMPTP as a critical promoter of prostate cancer (PCa) growth and bone metastasis. Through metabolomics, we found that LMPTP promotes PCa cell glutathione synthesis by dephosphorylating glutathione synthetase on inhibitory Tyr270. PCa cells lacking LMPTP showed reduced glutathione, enhanced activation of eukaryotic initiation factor 2-mediated stress response, and enhanced reactive oxygen species after exposure to taxane drugs. LMPTP inhibition slowed primary and bone metastatic prostate tumor growth in mice. These findings reveal a role for LMPTP as a critical promoter of PCa growth and metastasis and validate LMPTP inhibition as a therapeutic strategy for treating PCa through sensitization to oxidative stress.


Subject(s)
Prostatic Neoplasms , Male , Humans , Mice , Animals , Molecular Weight , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Tyrosine , Protein Tyrosine Phosphatases/metabolism
10.
bioRxiv ; 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38076981

ABSTRACT

In the Neurospora circadian system, the White Collar Complex (WCC) formed by WC-1 and WC-2 drives expression of the frequency ( frq ) gene whose product FRQ feedbacks to inhibit transcriptional activity of WCC. Phosphorylation of WCC has been extensively studied, but the extent and significance of other post-translational modifications (PTM) has been poorly studied. To this end, we used mass-spectrometry to study alkylation sites on WCC, resulting in discovery of nine acetylation sites. Mutagenesis analysis showed most of the acetylation events individually do not play important roles in period determination. Moreover, mutating all the lysines falling in either half of WC-1 or all the lysine residues in WC-2 to arginines did not abolish circadian rhythms. In addition, we also found nine mono-methylation sites on WC-1, but like acetylation, individual ablation of most of the mono-methylation events did not result in a significant period change. Taken together, the data here suggest that acetylation or mono-methylation on WCC is not a determinant of the pace of the circadian feedback loop. The finding is consistent with a model in which repression of WCC's circadian activity is controlled mainly by phosphorylation. Interestingly, light-induced expression of some light-responsive genes has been modulated in certain wc-1 acetylation mutants, suggesting that WC-1 acetylation events differentially regulate light responses.

11.
Mol Syst Biol ; 19(12): e11782, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37916966

ABSTRACT

Phosphoprotein phosphatases (PPPs) regulate major signaling pathways, but the determinants of phosphatase specificity are poorly understood. This is because methods to investigate this at scale are lacking. Here, we develop a novel in vitro assay, MRBLE:Dephos, that allows multiplexing of dephosphorylation reactions to determine phosphatase preferences. Using MRBLE:Dephos, we establish amino acid preferences of the residues surrounding the dephosphorylation site for PP1 and PP2A-B55, which reveals common and unique preferences. To compare the MRBLE:Dephos results to cellular substrates, we focused on mitotic exit that requires extensive dephosphorylation by PP1 and PP2A-B55. We use specific inhibition of PP1 and PP2A-B55 in mitotic exit lysates coupled with phosphoproteomics to identify more than 2,000 regulated sites. Importantly, the sites dephosphorylated during mitotic exit reveal key signatures that are consistent with MRBLE:Dephos. Furthermore, integration of our phosphoproteomic data with mitotic interactomes of PP1 and PP2A-B55 provides insight into how binding of phosphatases to substrates shapes dephosphorylation. Collectively, we develop novel approaches to investigate protein phosphatases that provide insight into mitotic exit regulation.


Subject(s)
Mitosis , Protein Phosphatase 2 , Phosphorylation , Protein Phosphatase 2/chemistry , Protein Phosphatase 2/genetics , Protein Phosphatase 2/metabolism , Signal Transduction , Substrate Specificity
12.
mBio ; 14(5): e0206623, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37787552

ABSTRACT

IMPORTANCE: Pyrin, a unique cytosolic receptor, initiates inflammatory responses against RhoA-inactivating bacterial toxins and effectors like Yersinia's YopE and YopT. Understanding pyrin regulation is crucial due to its association with dysregulated inflammatory responses, including Familial Mediterranean Fever (FMF), linked to pyrin gene mutations. FMF mutations historically acted as a defense mechanism against plague. Negative regulation of pyrin through PKN phosphorylation is well established, with Yersinia using the YopM effector to promote pyrin phosphorylation and counteract its activity. This study highlights the importance of phosphoprotein phosphatase activity in positively regulating pyrin inflammasome assembly in phagocytic cells of humans and mice. Oligomeric murine pyrin has S205 phosphorylated before inflammasome assembly, and this study implicates the dephosphorylation of murine pyrin S205 by two catalytic subunits of PP2A in macrophages. These findings offer insights for investigating the regulation of oligomeric pyrin and the balance of kinase and phosphatase activity in pyrin-associated infectious and autoinflammatory diseases.


Subject(s)
Inflammasomes , Protein Processing, Post-Translational , Humans , Animals , Mice , Inflammasomes/metabolism , Pyrin/genetics , Pyrin/metabolism , Macrophages/metabolism , Phosphoprotein Phosphatases/genetics , Mutation
13.
J Biol Chem ; 299(9): 105154, 2023 09.
Article in English | MEDLINE | ID: mdl-37572851

ABSTRACT

Genetic germline variants of PPP2R5D (encoding: phosphoprotein phosphatase 2 regulatory protein 5D) result in PPP2R5D-related disorder (Jordan's Syndrome), which is characterized by intellectual disability, hypotonia, seizures, macrocephaly, autism spectrum disorder, and delayed motor skill development. The disorder originates from de novo single nucleotide mutations, generating missense variants that act in a dominant manner. Pathogenic mutations altering 13 different amino acids have been identified, with the E198K variant accounting for ∼40% of reported cases. However, the generation of a heterozygous E198K variant cell line to study the molecular effects of the pathogenic mutation has been challenging. Here, we use CRISPR-PRIME genomic editing to introduce a transition (c.592G>A) in a single PPP2R5D allele in HEK293 cells, generating E198K-heterozygous lines to complement existing E420K variant lines. We generate global protein and phosphorylation profiles of WT, E198K, and E420K cell lines and find unique and shared changes between variants and WT cells in kinase- and phosphatase-controlled signaling cascades. We observed ribosomal protein S6 (RPS6) hyperphosphorylation as a shared signaling alteration, indicative of increased ribosomal protein S6-kinase activity. Treatment with rapamycin or an RPS6-kinase inhibitor (LY2584702) suppressed RPS6 phosphorylation in both, suggesting upstream activation of mTORC1/p70S6K. Intriguingly, our data suggests ERK-dependent activation of mTORC1 in both E198K and E420K variant cells, with additional AKT-mediated mTORC1 activation in the E420K variant. Thus, although upstream activation of mTORC1 differs between PPP2R5D-related disorder genotypes, inhibition of mTORC1 or RPS6 kinases warrants further investigation as potential therapeutic strategies for patients.


Subject(s)
Abnormalities, Multiple , Humans , Autism Spectrum Disorder , HEK293 Cells , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Phosphorylation , Protein Phosphatase 2/genetics , Protein Phosphatase 2/metabolism , Proteomics , Ribosomal Protein S6/genetics , Ribosomal Protein S6/metabolism , Abnormalities, Multiple/metabolism , Abnormalities, Multiple/pathology
14.
Mol Cell Proteomics ; 22(8): 100614, 2023 08.
Article in English | MEDLINE | ID: mdl-37392812

ABSTRACT

Protein phosphorylation is an essential regulatory mechanism that controls most cellular processes, including cell cycle progression, cell division, and response to extracellular stimuli, among many others, and is deregulated in many diseases. Protein phosphorylation is coordinated by the opposing activities of protein kinases and protein phosphatases. In eukaryotic cells, most serine/threonine phosphorylation sites are dephosphorylated by members of the Phosphoprotein Phosphatase (PPP) family. However, we only know for a few phosphorylation sites which specific PPP dephosphorylates them. Although natural compounds such as calyculin A and okadaic acid inhibit PPPs at low nanomolar concentrations, no selective chemical PPP inhibitors exist. Here, we demonstrate the utility of endogenous tagging of genomic loci with an auxin-inducible degron (AID) as a strategy to investigate specific PPP signaling. Using Protein Phosphatase 6 (PP6) as an example, we demonstrate how rapidly inducible protein degradation can be employed to identify dephosphorylation sites and elucidate PP6 biology. Using genome editing, we introduce AID-tags into each allele of the PP6 catalytic subunit (PP6c) in DLD-1 cells expressing the auxin receptor Tir1. Upon rapid auxin-induced degradation of PP6c, we perform quantitative mass spectrometry-based proteomics and phosphoproteomics to identify PP6 substrates in mitosis. PP6 is an essential enzyme with conserved roles in mitosis and growth signaling. Consistently, we identify candidate PP6c-dependent dephosphorylation sites on proteins implicated in coordinating the mitotic cell cycle, cytoskeleton, gene expression, and mitogen-activated protein kinase (MAPK) and Hippo signaling. Finally, we demonstrate that PP6c opposes the activation of large tumor suppressor 1 (LATS1) by dephosphorylating Threonine 35 (T35) on Mps One Binder (MOB1), thereby blocking the interaction of MOB1 and LATS1. Our analyses highlight the utility of combining genome engineering, inducible degradation, and multiplexed phosphoproteomics to investigate signaling by individual PPPs on a global level, which is currently limited by the lack of tools for specific interrogation.


Subject(s)
Colorectal Neoplasms , Protein Serine-Threonine Kinases , Humans , Proteolysis , Protein Serine-Threonine Kinases/metabolism , Phosphoprotein Phosphatases/metabolism , Phosphorylation , Threonine/metabolism , Colorectal Neoplasms/genetics , Protein Phosphatase 2/metabolism
15.
Nat Commun ; 14(1): 3371, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37291101

ABSTRACT

In the Neurospora circadian system, the White Collar Complex (WCC) drives expression of the principal circadian negative arm component frequency (frq). FRQ interacts with FRH (FRQ-interacting RNA helicase) and CKI, forming a stable complex that represses its own expression by inhibiting WCC. In this study, a genetic screen identified a gene, designated as brd-8, that encodes a conserved auxiliary subunit of the NuA4 histone acetylation complex. Loss of brd-8 reduces H4 acetylation and RNA polymerase (Pol) II occupancy at frq and other known circadian genes, and leads to a long circadian period, delayed phase, and defective overt circadian output at some temperatures. In addition to strongly associating with the NuA4 histone acetyltransferase complex, BRD-8 is also found complexed with the transcription elongation regulator BYE-1. Expression of brd-8, bye-1, histone h2a.z, and several NuA4 subunits is controlled by the circadian clock, indicating that the molecular clock both regulates the basic chromatin status and is regulated by changes in chromatin. Taken together, our data identify auxiliary elements of the fungal NuA4 complex having homology to mammalian components, which along with conventional NuA4 subunits, are required for timely and dynamic frq expression and thereby a normal and persistent circadian rhythm.


Subject(s)
Circadian Clocks , Neurospora crassa , Circadian Clocks/genetics , Neurospora crassa/metabolism , Circadian Rhythm/genetics , RNA Helicases/metabolism , Chromatin/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal
16.
bioRxiv ; 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37162945

ABSTRACT

In the Neurospora circadian system, the White Collar Complex (WCC) drives expression of the principal circadian negative arm component frequency ( frq ). FRQ interacts with FRH (FRQ-interacting helicase) and CK-1 forming a stable complex that represses its own expression by inhibiting WCC. In this study, a genetic screen identified a gene, designated as brd-8 , that encodes a conserved auxiliary subunit of the NuA4 histone acetylation complex. Loss of brd-8 reduces H4 acetylation and RNA polymerase (Pol) II occupancy at frq and other known circadian genes, and leads to a long circadian period, delayed phase, and defective overt circadian output at some temperatures. In addition to strongly associating with the NuA4 histone acetyltransferase complex, BRD-8 is also found complexed with the transcription elongation regulator BYE-1. Expression of brd-8, bye-1, histone hH2Az , and several NuA4 subunits is controlled by the circadian clock, indicating that the molecular clock both regulates the basic chromatin status and is regulated by changes in chromatin. Taken together, our data identify new auxiliary elements of the fungal NuA4 complex having homology to mammalian components, which along with conventional NuA4 subunits, are required for timely and dynamic frq expression and thereby a normal and persistent circadian rhythm.

17.
Trends Biochem Sci ; 48(8): 713-725, 2023 08.
Article in English | MEDLINE | ID: mdl-37173206

ABSTRACT

Dynamic protein phosphorylation and dephosphorylation are essential regulatory mechanisms that ensure proper cellular signaling and biological functions. Deregulation of either reaction has been implicated in several human diseases. Here, we focus on the mechanisms that govern the specificity of the dephosphorylation reaction. Most cellular serine/threonine dephosphorylation is catalyzed by 13 highly conserved phosphoprotein phosphatase (PPP) catalytic subunits, which form hundreds of holoenzymes by binding to regulatory and scaffolding subunits. PPP holoenzymes recognize phosphorylation site consensus motifs and interact with short linear motifs (SLiMs) or structural elements distal to the phosphorylation site. We review recent advances in understanding the mechanisms of PPP site-specific dephosphorylation preference and substrate recruitment and highlight examples of their interplay in the regulation of cell division.


Subject(s)
Phosphoprotein Phosphatases , Humans , Phosphorylation , Phosphoprotein Phosphatases/metabolism , Catalytic Domain , Holoenzymes/chemistry , Holoenzymes/metabolism , Substrate Specificity
18.
bioRxiv ; 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36945596

ABSTRACT

The Ser/Thr protein phosphatase 2A (PP2A) is a highly conserved collection of heterotrimeric holoenzymes responsible for the dephosphorylation of many regulated phosphoproteins. Substrate recognition and the integration of regulatory cues are mediated by B regulatory subunits that are complexed to the catalytic subunit (C) by a scaffold protein (A). PP2A/B55 substrate recruitment was thought to be mediated by charge-charge interactions between the surface of B55α and its substrates. Challenging this view, we recently discovered a conserved SLiM [ RK ]- V -x-x-[ VI ]- R in a range of proteins, including substrates such as the retinoblastoma-related protein p107 and TAU (Fowle et al. eLife 2021;10:e63181). Here we report the identification of this SLiM in FAM122A, an inhibitor of B55α/PP2A. This conserved SLiM is necessary for FAM122A binding to B55α in vitro and in cells. Computational structure prediction with AlphaFold2 predicts an interaction consistent with the mutational and biochemical data and supports a mechanism whereby FAM122A uses the 'SLiM' in the form of a short α-helix to dock to the B55α top groove. In this model, FAM122A spatially constrains substrate access by occluding the catalytic subunit with a second α-helix immediately adjacent to helix 1. Consistently, FAM122A functions as a competitive inhibitor as it prevents binding of substrates in in vitro competition assays and the dephosphorylation of CDK substrates by B55α/PP2A in cell lysates. Ablation of FAM122A in human cell lines reduces the rate of proliferation, progression through cell cycle transitions and abrogates G1/S and intra-S phase cell cycle checkpoints. FAM122A-KO in HEK293 cells results in attenuation of CHK1 and CHK2 activation in response to replication stress. Overall, these data strongly suggest that FAM122A is a 'SLiM'-dependent, substrate-competitive inhibitor of B55α/PP2A that suppresses multiple functions of B55α in the DNA damage response and in timely progression through the cell cycle interphase.

19.
bioRxiv ; 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36993243

ABSTRACT

Protein phosphorylation is an essential regulatory mechanism that controls most cellular processes, including cell cycle progression, cell division, and response to extracellular stimuli, among many others, and is deregulated in many diseases. Protein phosphorylation is coordinated by the opposing activities of protein kinases and protein phosphatases. In eukaryotic cells, most serine/threonine phosphorylation sites are dephosphorylated by members of the Phosphoprotein Phosphatase (PPP) family. However, we only know for a few phosphorylation sites which specific PPP dephosphorylates them. Although natural compounds such as calyculin A and okadaic acid inhibit PPPs at low nanomolar concentrations, no selective chemical PPP inhibitors exist. Here, we demonstrate the utility of endogenous tagging of genomic loci with an auxin-inducible degron (AID) as a strategy to investigate specific PPP signaling. Using Protein Phosphatase 6 (PP6) as an example, we demonstrate how rapidly inducible protein degradation can be employed to identify dephosphorylation SITES and elucidate PP6 biology. Using genome editing, we introduce AID-tags into each allele of the PP6 catalytic subunit (PP6c) in DLD-1 cells expressing the auxin receptor Tir1. Upon rapid auxin-induced degradation of PP6c, we perform quantitative mass spectrometry-based proteomics and phosphoproteomics to identify PP6 substrates in mitosis. PP6 is an essential enzyme with conserved roles in mitosis and growth signaling. Consistently, we identify candidate PP6c-dependent phosphorylation sites on proteins implicated in coordinating the mitotic cell cycle, cytoskeleton, gene expression, and mitogen-activated protein kinase (MAPK) and Hippo signaling. Finally, we demonstrate that PP6c opposes the activation of large tumor suppressor 1 (LATS1) by dephosphorylating Threonine 35 (T35) on Mps One Binder (MOB1), thereby blocking the interaction of MOB1 and LATS1. Our analyses highlight the utility of combining genome engineering, inducible degradation, and multiplexed phosphoproteomics to investigate signaling by individual PPPs on a global level, which is currently limited by the lack of tools for specific interrogation.

20.
Proc Natl Acad Sci U S A ; 120(2): e2208787120, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36598937

ABSTRACT

Wnt ligands are considered classical morphogens, for which the strength of the cellular response is proportional to the concentration of the ligand. Herein, we show an emergent property of bistability arising from feedback among the Wnt destruction complex proteins that target the key transcriptional co-activator ß-catenin for degradation. Using biochemical reconstitution, we identified positive feedback between the scaffold protein Axin and the kinase glycogen synthase kinase 3 (GSK3). Theoretical modeling of this feedback between Axin and GSK3 suggested that the activity of the destruction complex exhibits bistable behavior. We experimentally confirmed these predictions by demonstrating that cellular cytoplasmic ß-catenin concentrations exhibit an "all-or-none" response with sustained memory (hysteresis) of the signaling input. This bistable behavior was transformed into a graded response and memory was lost through inhibition of GSK3. These findings provide a mechanism for establishing decisive, switch-like cellular response and memory upon Wnt pathway stimulation.


Subject(s)
Axin Signaling Complex , beta Catenin , Axin Signaling Complex/metabolism , beta Catenin/metabolism , Axin Protein/genetics , Axin Protein/metabolism , Glycogen Synthase Kinase 3/metabolism , Feedback , Phosphorylation , Wnt Signaling Pathway/physiology
SELECTION OF CITATIONS
SEARCH DETAIL