Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters








Publication year range
1.
medRxiv ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39211865

ABSTRACT

We investigated the effectiveness of navtemadlin (KRT-232) in treating recurrent glioblastoma. A surgical window-of-opportunity trial ( NCT03107780 ) was conducted on 21 patients to determine achievable drug concentrations within tumor tissue and examine mechanisms of response and resistance. Both 120 mg and 240 mg daily dosing achieved a pharmacodynamic impact. Sequencing of three recurrent tumors revealed an absence of TP53 -inactivating mutations, indicating alternative mechanisms of resistance. In patient-derived GBM models, the lower range of clinically achieved navtemadlin concentrations induced partial tumor cell death as monotherapy. However, combining navtemadlin with temozolomide increased apoptotic rates while sparing normal bone marrow cells in vitro, which in return underwent reversible growth arrest. These results indicate that clinically achievable doses of navtemadlin generate significant pharmacodynamic effects and suggest that combined treatment with standard-of-care DNA damaging chemotherapy is a route to durable survival benefits. Statement of significance: Tissue sampling during this clinical trial allowed us to assess mechanisms of response and resistance associated with navtemadlin treatment in recurrent GBM. We report that clinically achievable doses of navtemadlin induce pharmacodynamic effects in tumor tissue, and suggest combinations with standard-of-care chemotherapy for durable clinical benefit.

2.
bioRxiv ; 2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38187588

ABSTRACT

The understanding of how different cell types contribute to amyotrophic lateral sclerosis (ALS) pathogenesis is limited. Here we generated a single-nucleus transcriptomic and epigenomic atlas of the frontal cortex of ALS cases with C9orf72 (C9) hexanucleotide repeat expansions and sporadic ALS (sALS). Our findings reveal shared pathways in C9-ALS and sALS, characterized by synaptic dysfunction in excitatory neurons and a disease-associated state in microglia. The disease subtypes diverge with loss of astrocyte homeostasis in C9-ALS, and a more substantial disturbance of inhibitory neurons in sALS. Leveraging high depth 3'-end sequencing, we found a widespread switch towards distal polyadenylation (PA) site usage across ALS subtypes relative to controls. To explore this differential alternative PA (APA), we developed APA-Net, a deep neural network model that uses transcript sequence and expression levels of RNA-binding proteins (RBPs) to predict cell-type specific APA usage and RBP interactions likely to regulate APA across disease subtypes.

3.
Plant Physiol ; 190(4): 2539-2556, 2022 11 28.
Article in English | MEDLINE | ID: mdl-36156105

ABSTRACT

A signaling complex comprising members of the LORELEI (LRE)-LIKE GPI-anchored protein (LLG) and Catharanthus roseus RECEPTOR-LIKE KINASE 1-LIKE (CrRLK1L) families perceive RAPID ALKALINIZATION FACTOR (RALF) peptides and regulate growth, reproduction, immunity, and stress responses in Arabidopsis (Arabidopsis thaliana). Genes encoding these proteins are members of multigene families in most angiosperms and could generate thousands of signaling complex variants. However, the links between expansion of these gene families and the functional diversification of this critical signaling complex as well as the evolutionary factors underlying the maintenance of gene duplicates remain unknown. Here, we investigated LLG gene family evolution by sampling land plant genomes and explored the function and expression of angiosperm LLGs. We found that LLG diversity within major land plant lineages is primarily due to lineage-specific duplication events, and that these duplications occurred both early in the history of these lineages and more recently. Our complementation and expression analyses showed that expression divergence (i.e. regulatory subfunctionalization), rather than functional divergence, explains the retention of LLG paralogs. Interestingly, all but one monocot and all eudicot species examined had an LLG copy with preferential expression in male reproductive tissues, while the other duplicate copies showed highest levels of expression in female or vegetative tissues. The single LLG copy in Amborella trichopoda is expressed vastly higher in male compared to in female reproductive or vegetative tissues. We propose that expression divergence plays an important role in retention of LLG duplicates in angiosperms.


Subject(s)
Arabidopsis , Embryophyta , Magnoliopsida , Arabidopsis/metabolism , Multigene Family , Phosphotransferases/genetics , Seeds/metabolism , Embryophyta/genetics , Magnoliopsida/genetics , Magnoliopsida/metabolism , Proteins/genetics , Gene Duplication , Evolution, Molecular , Phylogeny
4.
Hepatol Commun ; 6(4): 821-840, 2022 04.
Article in English | MEDLINE | ID: mdl-34792289

ABSTRACT

The critical functions of the human liver are coordinated through the interactions of hepatic parenchymal and non-parenchymal cells. Recent advances in single-cell transcriptional approaches have enabled an examination of the human liver with unprecedented resolution. However, dissociation-related cell perturbation can limit the ability to fully capture the human liver's parenchymal cell fraction, which limits the ability to comprehensively profile this organ. Here, we report the transcriptional landscape of 73,295 cells from the human liver using matched single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq). The addition of snRNA-seq enabled the characterization of interzonal hepatocytes at a single-cell resolution, revealed the presence of rare subtypes of liver mesenchymal cells, and facilitated the detection of cholangiocyte progenitors that had only been observed during in vitro differentiation experiments. However, T and B lymphocytes and natural killer cells were only distinguishable using scRNA-seq, highlighting the importance of applying both technologies to obtain a complete map of tissue-resident cell types. We validated the distinct spatial distribution of the hepatocyte, cholangiocyte, and mesenchymal cell populations by an independent spatial transcriptomics data set and immunohistochemistry. Conclusion: Our study provides a systematic comparison of the transcriptomes captured by scRNA-seq and snRNA-seq and delivers a high-resolution map of the parenchymal cell populations in the healthy human liver.


Subject(s)
Liver , Single-Cell Analysis , Cell Nucleus/genetics , Humans , Sequence Analysis, RNA , Transcriptome/genetics
5.
ACS Nano ; 14(4): 4698-4715, 2020 04 28.
Article in English | MEDLINE | ID: mdl-32255624

ABSTRACT

There is a tremendous focus on the application of nanomaterials for the treatment of cancer. Nonprimate models are conventionally used to assess the biomedical utility of nanomaterials. However, these animals often lack an intact immunological background, and the tumors in these animals do not develop spontaneously. We introduce a preclinical woodchuck hepatitis virus-induced liver cancer model as a platform for nanoparticle (NP)-based in vivo experiments. Liver cancer development in these out-bred animals occurs as a result of persistent viral infection, mimicking human hepatitis B virus-induced HCC development. We highlight how this model addresses key gaps associated with other commonly used tumor models. We employed this model to (1) track organ biodistribution of gold NPs after intravenous administration, (2) examine their subcellular localization in the liver, (3) determine clearance kinetics, and (4) characterize the identity of hepatic macrophages that take up NPs using RNA-sequencing (RNA-seq). We found that the liver and spleen were the primary sites of NP accumulation. Subcellular analyses revealed accumulation of NPs in the lysosomes of CD14+ cells. Through RNA-seq, we uncovered that immunosuppressive macrophages within the woodchuck liver are the major cell type that take up injected NPs. The woodchuck-HCC model has the potential to be an invaluable tool to examine NP-based immune modifiers that promote host anti-tumor immunity.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Nanoparticles , Animals , Disease Models, Animal , Humans , Liver , Marmota , Tissue Distribution
6.
FASEB J ; 33(3): 3968-3984, 2019 03.
Article in English | MEDLINE | ID: mdl-30509117

ABSTRACT

γ-Aminobutyric acid (GABA) administration has been shown to increase ß-cell mass, leading to a reversal of type 1 diabetes in mice. Whether GABA has any effect on ß cells of healthy and prediabetic/glucose-intolerant obese mice remains unknown. In the present study, we show that oral GABA administration ( ad libitum) to mice indeed increased pancreatic ß-cell mass, which led to a modest enhancement in insulin secretion and glucose tolerance. However, GABA treatment did not further increase insulin-positive islet area in high fat diet-fed mice and was unable to prevent or reverse glucose intolerance and insulin resistance. Mechanistically, whether in vivo or in vitro, GABA treatment increased ß-cell proliferation. In vitro, the effect was shown to be mediated via the GABAA receptor. Single-cell RNA sequencing analysis revealed that GABA preferentially up-regulated pathways linked to ß-cell proliferation and simultaneously down-regulated those networks required for other processes, including insulin biosynthesis and metabolism. Interestingly, single-cell differential expression analysis revealed GABA treatment gave rise to a distinct subpopulation of ß cells with a unique transcriptional signature, including urocortin 3 ( ucn3), wnt4, and hepacam2. Taken together, this study provides new mechanistic insight into the proliferative nature of GABA but suggests that ß-cell compensation associated with prediabetes overlaps with, and negates, its proliferative effects.-Untereiner, A., Abdo, S., Bhattacharjee, A., Gohil, H., Pourasgari, F., Ibeh, N., Lai, M., Batchuluun, B., Wong, A., Khuu, N., Liu, Y., Al Rijjal, D., Winegarden, N., Virtanen, C., Orser, B. A., Cabrera, O., Varga, G., Rocheleau, J., Dai, F. F., Wheeler, M. B. GABA promotes ß-cell proliferation, but does not overcome impaired glucose homeostasis associated with diet-induced obesity.


Subject(s)
Cell Proliferation , Glucose/metabolism , Insulin-Secreting Cells/metabolism , Obesity/metabolism , Transcriptome , gamma-Aminobutyric Acid/pharmacology , Animals , Cell Line , Cells, Cultured , Diet, High-Fat/adverse effects , Homeostasis , Humans , Insulin/metabolism , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/physiology , Male , Mice , Mice, Inbred C57BL , Obesity/etiology , Receptors, GABA-A/metabolism , Urocortins/metabolism
7.
Nat Commun ; 9(1): 4383, 2018 10 22.
Article in English | MEDLINE | ID: mdl-30348985

ABSTRACT

The liver is the largest solid organ in the body and is critical for metabolic and immune functions. However, little is known about the cells that make up the human liver and its immune microenvironment. Here we report a map of the cellular landscape of the human liver using single-cell RNA sequencing. We provide the transcriptional profiles of 8444 parenchymal and non-parenchymal cells obtained from the fractionation of fresh hepatic tissue from five human livers. Using gene expression patterns, flow cytometry, and immunohistochemical examinations, we identify 20 discrete cell populations of hepatocytes, endothelial cells, cholangiocytes, hepatic stellate cells, B cells, conventional and non-conventional T cells, NK-like cells, and distinct intrahepatic monocyte/macrophage populations. Together, our study presents a comprehensive view of the human liver at single-cell resolution that outlines the characteristics of resident cells in the liver, and in particular provides a map of the human hepatic immune microenvironment.


Subject(s)
Liver/cytology , Liver/metabolism , Macrophages/cytology , Macrophages/metabolism , B-Lymphocytes/cytology , B-Lymphocytes/metabolism , Endothelial Cells/cytology , Endothelial Cells/metabolism , Hepatic Stellate Cells/cytology , Hepatic Stellate Cells/metabolism , Hepatocytes/cytology , Hepatocytes/metabolism , Humans , Monocytes/cytology , Monocytes/metabolism , Sequence Analysis, RNA
8.
Plant Cell ; 25(5): 1726-39, 2013 May.
Article in English | MEDLINE | ID: mdl-23667126

ABSTRACT

COMPARATIVE GENE IDENTIFICATION-58 (CGI-58) is a key regulator of lipid metabolism and signaling in mammals, but its underlying mechanisms are unclear. Disruption of CGI-58 in either mammals or plants results in a significant increase in triacylglycerol (TAG), suggesting that CGI-58 activity is evolutionarily conserved. However, plants lack proteins that are important for CGI-58 activity in mammals. Here, we demonstrate that CGI-58 functions by interacting with the PEROXISOMAL ABC-TRANSPORTER1 (PXA1), a protein that transports a variety of substrates into peroxisomes for their subsequent metabolism by ß-oxidation, including fatty acids and lipophilic hormone precursors of the jasmonate and auxin biosynthetic pathways. We also show that mutant cgi-58 plants display changes in jasmonate biosynthesis, auxin signaling, and lipid metabolism consistent with reduced PXA1 activity in planta and that, based on the double mutant cgi-58 pxa1, PXA1 is epistatic to CGI-58 in all of these processes. However, CGI-58 was not required for the PXA1-dependent breakdown of TAG in germinated seeds. Collectively, the results reveal that CGI-58 positively regulates many aspects of PXA1 activity in plants and that these two proteins function to coregulate lipid metabolism and signaling, particularly in nonseed vegetative tissues. Similarities and differences of CGI-58 activity in plants versus animals are discussed.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Acyltransferases/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Lipid Metabolism , ATP-Binding Cassette Transporters/genetics , Acyltransferases/genetics , Adenosine Triphosphatases , Amino Acid Sequence , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Cell Nucleus/metabolism , Cyclopentanes/metabolism , Fatty Acid Transport Proteins/genetics , Fatty Acid Transport Proteins/metabolism , Fatty Acids/metabolism , Homeostasis , Hydrolases/genetics , Hydrolases/metabolism , Indoleacetic Acids/metabolism , Indoleacetic Acids/pharmacology , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Microscopy, Confocal , Molecular Sequence Data , Mutation , Oxylipins/metabolism , Peroxisomes/metabolism , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/growth & development , Protein Binding , Seeds/genetics , Seeds/growth & development , Seeds/metabolism , Sequence Homology, Amino Acid , Signal Transduction , Triglycerides/metabolism , Two-Hybrid System Techniques
9.
Plant J ; 71(2): 251-62, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22404138

ABSTRACT

Phosphoenolpyruvate carboxylase (PEPC) from developing castor oil seeds (COS) exists as two distinct oligomeric isoforms. The typical class-1 PEPC homotetramer consists of 107-kDa plant-type PEPC (PTPC) subunits, whereas the allosterically desensitized 910-kDa class-2 PEPC hetero-octamer arises from the association of class-1 PEPC with 118-kDa bacterial-type PEPC (BTPC) subunits. The in vivo interaction and subcellular location of COS BTPC and PTPC were assessed by imaging fluorescent protein (FP)-tagged PEPCs in tobacco suspension-cultured cells. The BTPC-FP mainly localized to cytoplasmic punctate/globular structures, identified as mitochondria by co-immunostaining of endogenous cytochrome oxidase. Inhibition of respiration with KCN resulted in proportional decreases and increases in mitochondrial versus cytosolic BTPC-FP, respectively. The FP-PTPC and NLS-FP-PTPC (containing an appended nuclear localization signal, NLS) localized to the cytosol and nucleus, respectively, but both co-localized with mitochondrial-associated BTPC when co-expressed with BTPC-FP. Transmission electron microscopy of immunogold-labeled developing COS revealed that BTPC and PTPC are localized at the mitochondrial (outer) envelope, as well as the cytosol. Moreover, thermolysin-sensitive BTPC and PTPC polypeptides were detected on immunoblots of purified COS mitochondria. Overall, our results demonstrate that: (i) COS BTPC and PTPC interact in vivo as a class-2 PEPC complex that associates with the surface of mitochondria, (ii) BTPC's unique and divergent intrinsically disordered region mediates its interaction with PTPC, whereas (iii) the PTPC-containing class-1 PEPC is entirely cytosolic. We hypothesize that mitochondrial-associated class-2 PEPC facilitates rapid refixation of respiratory CO(2) while sustaining a large anaplerotic flux to replenish tricarboxylic acid cycle C-skeletons withdrawn for biosynthesis.


Subject(s)
Mitochondria/enzymology , Phosphoenolpyruvate Carboxylase/metabolism , Ricinus communis/enzymology , Seeds/enzymology , Amino Acid Sequence , Ricinus communis/cytology , Ricinus communis/genetics , Cell Culture Techniques , Computational Biology , Endosperm/cytology , Endosperm/enzymology , Endosperm/genetics , Gene Expression , Isoenzymes/genetics , Isoenzymes/metabolism , Mitochondria/genetics , Molecular Sequence Data , Phosphoenolpyruvate Carboxylase/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Interaction Mapping , Protein Transport , Recombinant Fusion Proteins , Seeds/cytology , Seeds/genetics , Sequence Alignment , Nicotiana/cytology , Nicotiana/enzymology , Nicotiana/genetics
10.
Plant Signal Behav ; 6(3): 422-5, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21350343

ABSTRACT

The regulation of fatty acid desaturase activity in plants is important for determining the polyunsaturated fatty acid content of cellular membranes, which is often rapidly adjusted in plant cells in response to temperature change. Recent studies have demonstrated that the endoplasmic reticulum (ER)-localized omega-3 desaturases (Fad3s) are regulated extensively at the post-transcriptional level by both temperature-dependent changes in translational efficiency, as well as modulation of protein half-life. While the N-terminal sequences of Fad3 proteins were shown to contain information that mediates their rapid, proteasome-dependent protein turnover in both plant and yeast cells, it is currently unknown whether these sequences alone are sufficient to direct protein degradation. In this report, we fused the N-terminal sequences of two different Fad3 proteins to an ER-localized fluorescent protein reporter, consisting of the green fluorescent protein and the ER integral membrane protein cytochrome b5, and then measured (via microscopy) the degradation of the resulting fusion proteins in plant suspension-cultured cells relative to a second, co-expressed fluorescent reporter protein. Overall, the results demonstrate that the N-termini of both Fad3 proteins are sufficient for conferring rapid, proteasome-dependent degradation to an ER-bound marker protein. 


Subject(s)
Aleurites/enzymology , Brassica/enzymology , Endoplasmic Reticulum/metabolism , Fatty Acid Desaturases/metabolism , Proteasome Endopeptidase Complex/metabolism , Models, Biological
11.
Front Plant Sci ; 2: 20, 2011.
Article in English | MEDLINE | ID: mdl-22639582

ABSTRACT

The endosomal sorting complex required for transport (ESCRT) consists of several multi-protein subcomplexes which assemble sequentially at the endosomal surface and function in multivesicular body (MVB) biogenesis. While ESCRT has been relatively well characterized in yeasts and mammals, comparably little is known about ESCRT in plants. Here we explored the yeast two-hybrid protein interaction network and subcellular localization of the Arabidopsis thaliana ESCRT machinery. We show that the Arabidopsis ESCRT interactome possesses a number of protein-protein interactions that are either conserved in yeasts and mammals or distinct to plants. We show also that most of the Arabidopsis ESCRT proteins examined at least partially localize to MVBs in plant cells when ectopically expressed on their own or co-expressed with other interacting ESCRT proteins, and some also induce abnormal MVB phenotypes, consistent with their proposed functional role(s) as part of the ESCRT machinery in Arabidopsis. Overall, our results help define the plant ESCRT machinery by highlighting both conserved and unique features when compared to ESCRT in other evolutionarily diverse organisms, providing a foundation for further exploration of ESCRT in plants.

SELECTION OF CITATIONS
SEARCH DETAIL