Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters








Publication year range
1.
Nat Commun ; 15(1): 6727, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112477

ABSTRACT

Optically addressable spin defects hosted in two-dimensional van der Waals materials represent a new frontier for quantum technologies, promising to lead to a new class of ultrathin quantum sensors and simulators. Recently, hexagonal boron nitride (hBN) has been shown to host several types of optically addressable spin defects, thus offering a unique opportunity to simultaneously address and utilise various spin species in a single material. Here we demonstrate an interplay between two separate spin species within a single hBN crystal, namely S = 1 boron vacancy defects and carbon-related electron spins. We reveal the S = 1/2 character of the carbon-related defect and further demonstrate room temperature coherent control and optical readout of both S = 1 and S = 1/2 spin species. By tuning the two spin ensembles into resonance with each other, we observe cross-relaxation indicating strong inter-species dipolar coupling. We then demonstrate magnetic imaging using the S = 1/2 defects and leverage their lack of intrinsic quantization axis to probe the magnetic anisotropy of a test sample. Our results establish hBN as a versatile platform for quantum technologies in a van der Waals host at room temperature.

2.
Nat Commun ; 15(1): 2008, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443418

ABSTRACT

Van der Waals (vdW) materials, including hexagonal boron nitride (hBN), are layered crystalline solids with appealing properties for investigating light-matter interactions at the nanoscale. hBN has emerged as a versatile building block for nanophotonic structures, and the recent identification of native optically addressable spin defects has opened up exciting possibilities in quantum technologies. However, these defects exhibit relatively low quantum efficiencies and a broad emission spectrum, limiting potential applications. Optical metasurfaces present a novel approach to boost light emission efficiency, offering remarkable control over light-matter coupling at the sub-wavelength regime. Here, we propose and realise a monolithic scalable integration between intrinsic spin defects in hBN metasurfaces and high quality (Q) factor resonances, exceeding 102, leveraging quasi-bound states in the continuum (qBICs). Coupling between defect ensembles and qBIC resonances delivers a 25-fold increase in photoluminescence intensity, accompanied by spectral narrowing to below 4 nm linewidth and increased narrowband spin-readout efficiency. Our findings demonstrate a new class of metasurfaces for spin-defect-based technologies and pave the way towards vdW-based nanophotonic devices with enhanced efficiency and sensitivity for quantum applications in imaging, sensing, and light emission.

3.
ACS Nano ; 17(14): 13408-13417, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37406158

ABSTRACT

Detecting magnetic noise from small quantities of paramagnetic spins is a powerful capability for chemical, biochemical, and medical analysis. Quantum sensors based on optically addressable spin defects in bulk semiconductors are typically employed for such purposes, but the 3D crystal structure of the sensor inhibits sensitivity by limiting the proximity of the defects to the target spins. Here we demonstrate the detection of paramagnetic spins using spin defects hosted in hexagonal boron nitride (hBN), a van der Waals material that can be exfoliated into the 2D regime. We first create negatively charged boron vacancy (VB-) defects in a powder of ultrathin hBN nanoflakes (<10 atomic monolayers thick on average) and measure the longitudinal spin relaxation time (T1) of this system. We then decorate the dry hBN nanopowder with paramagnetic Gd3+ ions and observe a clear T1 quenching under ambient conditions, consistent with the added magnetic noise. Finally, we demonstrate the possibility of performing spin measurements, including T1 relaxometry using solution-suspended hBN nanopowder. Our results highlight the potential and versatility of the hBN quantum sensor for a range of sensing applications and make steps toward the realization of a truly 2D, ultrasensitive quantum sensor.

4.
Nano Lett ; 23(13): 6141-6147, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37363816

ABSTRACT

Negatively charged boron vacancies (VB-) in hexagonal boron nitride (hBN) have recently gained interest as spin defects for quantum information processing and quantum sensing by a layered material. However, the boron vacancy can exist in a number of charge states in the hBN lattice, but only the -1 state has spin-dependent photoluminescence and acts as a spin-photon interface. Here, we investigate the charge state switching of VB defects under laser and electron beam excitation. We demonstrate deterministic, reversible switching between the -1 and 0 states (VB- ⇌ VB0 + e-), occurring at rates controlled by excess electrons or holes injected into hBN by a layered heterostructure device. Our work provides a means to monitor and manipulate the VB charge state, and to stabilize the -1 state which is a prerequisite for spin manipulation and optical readout of the defect.

5.
Nanoscale ; 14(40): 14950-14955, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36069362

ABSTRACT

Spin-dependent optical transitions are attractive for a plethora of applications in quantum technologies. Here we report on utilization of high quality ring resonators fabricated from TiO2 to enhance the emission from negatively charged boron vacancies (VB-) in hexagonal Boron Nitride. We show that the emission from these defects can efficiently couple into the whispering gallery modes of the ring resonators. Optically coupled VB- showed photoluminescence contrast in optically detected magnetic resonance signals from the hybrid coupled devices. Our results demonstrate a practical method for integration of spin defects in 2D materials with dielectric resonators which is a promising platform for quantum technologies.

7.
Light Sci Appl ; 11(1): 186, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35725815

ABSTRACT

Controlling and manipulating individual quantum systems in solids underpins the growing interest in the development of scalable quantum technologies. Recently, hexagonal boron nitride (hBN) has garnered significant attention in quantum photonic applications due to its ability to host optically stable quantum emitters. However, the large bandgap of hBN and the lack of efficient doping inhibits electrical triggering and limits opportunities to study the electrical control of emitters. Here, we show an approach to electrically modulate quantum emitters in an hBN-graphene van der Waals heterostructure. We show that quantum emitters in hBN can be reversibly activated and modulated by applying a bias across the device. Notably, a significant number of quantum emitters are intrinsically dark and become optically active at non-zero voltages. To explain the results, we provide a heuristic electrostatic model of this unique behavior. Finally, employing these devices we demonstrate a nearly-coherent source with linewidths of ~160 MHz. Our results enhance the potential of hBN for tunable solid-state quantum emitters for the growing field of quantum information science.

8.
Nanoscale ; 14(13): 5239-5244, 2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35315850

ABSTRACT

Two-dimensional hexagonal boron nitride (hBN) has attracted much attention as a platform for studies of light-matter interactions at the nanoscale, especially in quantum nanophotonics. Recent efforts have focused on spin defects, specifically negatively charged boron vacancy (VB-) centers. Here, we demonstrate a scalable method to enhance the VB- emission using an array of SiO2 nanopillars. We achieve a 4-fold increase in photoluminescence (PL) intensity, and a corresponding 4-fold enhancement in optically detected magnetic resonance (ODMR) contrast. Furthermore, the VB- ensembles provide useful information about the strain fields associated with the strained hBN at the nanopillar sites. Our results provide an accessible way to increase the emission intensity as well as the ODMR contrast of the VB- defects, while simultaneously form a basis for miniaturized quantum sensors in layered heterostructures.

9.
Small ; 18(2): e2104805, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34837313

ABSTRACT

Integration of solid-state quantum emitters into nanophotonic circuits is a critical step towards fully on-chip quantum photonic-based technologies. Among potential materials platforms, quantum emitters in hexagonal boron nitride (hBN) have emerged as a viable candidate over the last years. While the fundamental physical properties have been intensively studied, only a few works have focused on the emitter integration into photonic resonators. Yet, for a potential quantum photonic material platform, the integration with nanophotonic cavities is an important cornerstone, as it enables the deliberate tuning of the spontaneous emission and the improved readout of distinct transitions for a quantum emitter. In this work, the resonant tuning of a monolithic cavity integrated hBN quantum emitter is demonstrated through gas condensation at cryogenic temperature. In resonance, an emission enhancement and lifetime reduction are observed, with an estimate for the Purcell factor of ≈15.

10.
Adv Mater ; 34(1): e2106046, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34601757

ABSTRACT

Spin defects in hexagonal boron nitride, and specifically the negatively charged boron vacancy (VB - ) centers, are emerging candidates for quantum sensing. However, the VB - defects suffer from low quantum efficiency and, as a result, exhibit weak photoluminescence. In this work, a scalable approach is demonstrated to dramatically enhance the VB - emission by coupling to a plasmonic gap cavity. The plasmonic cavity is composed of a flat gold surface and a silver cube, with few-layer hBN flakes positioned in between. Employing these plasmonic cavities, two orders of magnitude are extracted in photoluminescence enhancement associated with a corresponding twofold enhancement in optically detected magnetic resonance contrast. The work will be pivotal to progress in quantum sensing employing 2D materials, and in realization of nanophotonic devices with spin defects in hexagonal boron nitride.

11.
Nano Lett ; 21(15): 6549-6555, 2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34288695

ABSTRACT

Color centers in hexagonal boron nitride (hBN) are becoming an increasingly important building block for quantum photonic applications. Herein, we demonstrate the efficient coupling of recently discovered spin defects in hBN to purposely designed bullseye cavities. We show that boron vacancy spin defects couple to the monolithic hBN cavity system and exhibit a 6.5-fold enhancement. In addition, by comparative finite-difference time-domain modeling, we shed light on the emission dipole orientation, which has not been experimentally demonstrated at this point. Beyond that, the coupled spin system exhibits an enhanced contrast in optically detected magnetic resonance readout and improved signal-to-noise ratio. Thus, our experimental results, supported by simulations, constitute a first step toward integration of hBN spin defects with photonic resonators for a scalable spin-photon interface.

12.
Nat Commun ; 12(1): 4480, 2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34294695

ABSTRACT

Spin defects in solid-state materials are strong candidate systems for quantum information technology and sensing applications. Here we explore in details the recently discovered negatively charged boron vacancies (VB-) in hexagonal boron nitride (hBN) and demonstrate their use as atomic scale sensors for temperature, magnetic fields and externally applied pressure. These applications are possible due to the high-spin triplet ground state and bright spin-dependent photoluminescence of the VB-. Specifically, we find that the frequency shift in optically detected magnetic resonance measurements is not only sensitive to static magnetic fields, but also to temperature and pressure changes which we relate to crystal lattice parameters. We show that spin-rich hBN films are potentially applicable as intrinsic sensors in heterostructures made of functionalized 2D materials.

13.
Nanoscale ; 13(20): 9322-9327, 2021 May 27.
Article in English | MEDLINE | ID: mdl-33988218

ABSTRACT

Ion implantation underpins a vast range of devices and technologies that require precise control over the physical, chemical, electronic, magnetic and optical properties of materials. A variant termed "recoil implantation" - in which a precursor is deposited onto a substrate as a thin film and implanted via momentum transfer from incident energetic ions - has a number of compelling advantages, particularly when performed using an inert ion nano-beam [Fröch et al., Nat. Commun., 2020, 11, 5039]. However, a major drawback of this approach is that the implant species are limited to the constituents of solid thin films. Here we overcome this limitation by demonstrating recoil implantation using gas-phase precursors. Specifically, we fabricate nitrogen-vacancy (NV) color centers in diamond using an Ar+ ion beam and the nitrogen-containing precursor gases N2, NH3 and NF3. Our work expands the applicability of recoil implantation with the potential to be suitable to a larger portion of the periodic table, and to applications in which thin film deposition/removal is impractical.

14.
Sci Adv ; 7(14)2021 Apr.
Article in English | MEDLINE | ID: mdl-33811078

ABSTRACT

Optically active spin defects are promising candidates for solid-state quantum information and sensing applications. To use these defects in quantum applications coherent manipulation of their spin state is required. Here, we realize coherent control of ensembles of boron vacancy centers in hexagonal boron nitride (hBN). Specifically, by applying pulsed spin resonance protocols, we measure a spin-lattice relaxation time of 18 microseconds and a spin coherence time of 2 microseconds at room temperature. The spin-lattice relaxation time increases by three orders of magnitude at cryogenic temperature. By applying a method to decouple the spin state from its inhomogeneous nuclear environment the optically detected magnetic resonance linewidth is substantially reduced to several tens of kilohertz. Our results are important for the employment of van der Waals materials for quantum technologies, specifically in the context of high resolution quantum sensing of two-dimensional heterostructures, nanoscale devices, and emerging atomically thin magnets.

15.
Nat Commun ; 11(1): 5039, 2020 Oct 07.
Article in English | MEDLINE | ID: mdl-33028814

ABSTRACT

Modifying material properties at the nanoscale is crucially important for devices in nano-electronics, nanophotonics and quantum information. Optically active defects in wide band gap materials, for instance, are critical constituents for the realisation of quantum technologies. Here, we demonstrate the use of recoil implantation, a method exploiting momentum transfer from accelerated ions, for versatile and mask-free material doping. As a proof of concept, we direct-write arrays of optically active defects into diamond via momentum transfer from a Xe+ focused ion beam (FIB) to thin films of the group IV dopants pre-deposited onto a diamond surface. We further demonstrate the flexibility of the technique, by implanting rare earth ions into the core of a single mode fibre. We conclusively show that the presented technique yields ultra-shallow dopant profiles localised to the top few nanometres of the target surface, and use it to achieve sub-50 nm positional accuracy. The method is applicable to non-planar substrates with complex geometries, and it is suitable for applications such as electronic and magnetic doping of atomically-thin materials and engineering of near-surface states of semiconductor devices.

16.
ACS Appl Mater Interfaces ; 12(26): 29700-29705, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32492334

ABSTRACT

Group IV color centers in diamond (Si, Ge, Sn, and Pb) have recently emerged as promising candidates for realization of scalable quantum photonics. However, their synthesis in nanoscale diamond is still in its infancy. In this work we demonstrate controlled synthesis of selected group IV defects (Ge and Sn) into nanodiamonds and nanoscale single crystal diamond membranes by microwave plasma chemical vapor deposition. We take advantage of inorganic salts to prepare the chemical precursors that contain the required ions that are then incorporated into the growing diamond. Photoluminescence measurements confirm that the selected group IV emitters are present in the diamond without degrading its structural quality. Our results are important to expand the versatile synthesis of color centers in diamond.

17.
ACS Nano ; 14(6): 7085-7091, 2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32401482

ABSTRACT

Quantum photonics technologies require a scalable approach for the integration of nonclassical light sources with photonic resonators to achieve strong light confinement and enhancement of quantum light emission. Point defects from hexagonal boron nitride (hBN) are among the front runners for single photon sources due to their ultra-bright emission; however, the coupling of hBN defects to photonic crystal cavities has so far remained elusive. Here we demonstrate on-chip integration of hBN quantum emitters with photonic crystal cavities from silicon nitride (Si3N4) and achieve an experimentally measured quality factor (Q-factor) of 3300 for hBN/Si3N4 hybrid cavities. We observed 6-fold photoluminescence enhancement of an hBN single photon emission at room temperature. Our work will be useful for further development of cavity quantum electrodynamic experiments and on-chip integration of two-dimensional (2D) materials.

18.
Nat Mater ; 19(5): 540-545, 2020 May.
Article in English | MEDLINE | ID: mdl-32094496

ABSTRACT

Optically addressable spins in wide-bandgap semiconductors are a promising platform for exploring quantum phenomena. While colour centres in three-dimensional crystals such as diamond and silicon carbide were studied in detail, they were not observed experimentally in two-dimensional (2D) materials. Here, we report spin-dependent processes in the 2D material hexagonal boron nitride (hBN). We identify fluorescence lines associated with a particular defect, the negatively charged boron vacancy ([Formula: see text]), showing a triplet (S = 1) ground state and zero-field splitting of ~3.5 GHz. We establish that this centre exhibits optically detected magnetic resonance at room temperature and demonstrate its spin polarization under optical pumping, which leads to optically induced population inversion of the spin ground state-a prerequisite for coherent spin-manipulation schemes. Our results constitute a step forward in establishing 2D hBN as a prime platform for scalable quantum technologies, with potential for spin-based quantum information and sensing applications.

19.
Opt Lett ; 44(19): 4873-4876, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31568464

ABSTRACT

Single-photon sources in solid-state systems are widely explored as fundamental constituents of numerous quantum-based technologies. We report the observation of single-photon emitters in zinc sulfide and present their photophysical properties via established spectroscopy techniques. The emitter behaves like a three-level system with an intermediate metastable state. It emits at ∼640 nm, and its emission is linearly polarized, with a lifetime of (2.2±0.8) ns. The existence of single-photon sources in zinc sulfide is appealing due to the well-established manufacturing techniques of the material, its versatile technological uses, as well as the availability of many zinc isotopes with potential for designing ad hoc emitter-host pairs with tailored properties.

20.
ACS Nano ; 13(3): 3132-3140, 2019 Mar 26.
Article in English | MEDLINE | ID: mdl-30715854

ABSTRACT

Quantum technologies require robust and photostable single photon emitters (SPEs). Hexagonal boron nitride (hBN) has recently emerged as a promising candidate to host bright and optically stable SPEs operating at room temperature. However, the emission wavelength of the fluorescent defects in hBN has, to date, been shown to be uncontrolled, with a widespread of zero phonon line (ZPL) energies spanning a broad spectral range (hundreds of nanometers), which hinders the potential development of hBN-based devices and applications. Here we demonstrate chemical vapor deposition growth of large-area, few-layer hBN films that host large quantities of SPEs: ∼100-200 per 10 × 10 µm2. More than 85% of the emitters have a ZPL at (580 ± 10) nm, a distribution that is an order of magnitude narrower than reported previously. Furthermore, we demonstrate tuning of the ZPL wavelength using ionic liquid devices over a spectral range of up to 15 nm-the largest obtained to date from any solid-state SPE. The fabricated devices illustrate the potential of hBN for the development of hybrid quantum nanophotonic and optoelectronic devices based on two-dimensional materials.

SELECTION OF CITATIONS
SEARCH DETAIL