Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
Add more filters








Publication year range
1.
Article in English | MEDLINE | ID: mdl-39115548

ABSTRACT

RATIONALE: Despite significant advances in precision treatments and immunotherapy, lung cancer is the most common cause of cancer death worldwide. To reduce incidence and improve survival rates, a deeper understanding of lung premalignancy and the multistep process of tumorigenesis is essential, allowing for timely and effective intervention before cancer development. OBJECTIVES: To summarize existing information, identify knowledge gaps, formulate research questions, prioritize potential research topics, and propose strategies for future investigations into the premalignant progression in the lung. METHODS: An international multidisciplinary team of basic, translational, and clinical scientists reviewed available data to develop and refine research questions pertaining to the transformation of premalignant lung lesions to advanced lung cancer. RESULTS: This research statement identifies significant gaps in knowledge and proposes potential research questions aimed at expanding our understanding of the mechanisms underlying the progression of premalignant lung lesions to lung cancer in an effort to explore potential innovative modalities to intercept lung cancer at its nascent stages. CONCLUSIONS: The identified gaps in knowledge about the biological mechanisms of premalignant progression in the lung, along with ongoing challenges in screening, detection, and early intervention, highlight the critical need to prioritize research in this domain. Such focused investigations are essential to devise effective preventive strategies that may ultimately decrease lung cancer incidence and improve patient outcomes.

2.
EMBO J ; 43(14): 2843-2861, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38755258

ABSTRACT

Glycine-12 mutations in the GTPase KRAS (KRASG12) are an initiating event for development of lung adenocarcinoma (LUAD). KRASG12 mutations promote cell-intrinsic rewiring of alveolar type-II progenitor (AT2) cells, but to what extent such changes interplay with lung homeostasis and cell fate pathways is unclear. Here, we generated single-cell RNA-seq (scRNA-seq) profiles from AT2-mesenchyme organoid co-cultures, mice, and stage-IA LUAD patients, identifying conserved regulators of AT2 transcriptional dynamics and defining the impact of KRASG12D mutation with temporal resolution. In AT2WT organoids, we found a transient injury/plasticity state preceding AT2 self-renewal and AT1 differentiation. Early-stage AT2KRAS cells exhibited perturbed gene expression dynamics, most notably retention of the injury/plasticity state. The injury state in AT2KRAS cells of patients, mice, and organoids was distinguishable from AT2WT states via altered receptor expression, including co-expression of ITGA3 and SRC. The combination of clinically relevant KRASG12D and SRC inhibitors impaired AT2KRAS organoid growth. Together, our data show that an injury/plasticity state essential for lung repair is co-opted during AT2 self-renewal and LUAD initiation, suggesting that early-stage LUAD may be susceptible to interventions that target specifically the oncogenic nature of this cell state.


Subject(s)
Lung Neoplasms , Organoids , Proto-Oncogene Proteins p21(ras) , Animals , Humans , Mice , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Cell Differentiation , Gene Expression Regulation, Neoplastic , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Mutation , Organoids/metabolism , Organoids/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , src-Family Kinases/metabolism , src-Family Kinases/genetics
3.
bioRxiv ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38617297

ABSTRACT

Acute injury in the airways or the lung activates local progenitors and stimulates changes in cell-cell interactions to restore homeostasis, but it is not appreciated how more distant niches are impacted. We utilized mouse models of airway-specific epithelial injury to examine secondary tissue-wide alveolar, immune, and mesenchymal responses. Single-cell transcriptomics and in vivo validation revealed transient, tissue-wide proliferation of alveolar type 2 (AT2) progenitor cells after club cell-specific ablation. The AT2 cell proliferative response was reliant on alveolar macrophages (AMs) via upregulation of Spp1 which encodes the secreted factor Osteopontin. A previously uncharacterized mesenchymal population we termed Mesenchymal Airway/Adventitial Niche Cell 2 (MANC2) also exhibited dynamic changes in abundance and a pro-fibrotic transcriptional signature after club cell ablation in an AM-dependent manner. Overall, these results demonstrate that acute airway damage can trigger distal lung responses including altered cell-cell interactions that may contribute to potential vulnerabilities for further dysregulation and disease.

5.
Cells Dev ; 177: 203905, 2024 03.
Article in English | MEDLINE | ID: mdl-38355015

ABSTRACT

The upper airway acts as a conduit for the passage of air to the respiratory system and is implicated in several chronic diseases. Whilst the cell biology of the distal respiratory system has been described in great detail, less is known about the proximal upper airway. In this review, we describe the relevant anatomy of the upper airway and discuss the literature detailing the identification and roles of the progenitor cells of these regions.


Subject(s)
Larynx , Trachea , Stem Cells , Nose
6.
Dev Cell ; 58(24): 2974-2991.e6, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-37977149

ABSTRACT

The lung contains multiple progenitor cell types, but how their responses are choreographed during injury repair and whether this changes with age is poorly understood. We report that histone H3 lysine 9 di-methylation (H3K9me2), mediated by the methyltransferase G9a, regulates the dynamics of distal lung epithelial progenitor cells and that this regulation deteriorates with age. In aged mouse lungs, H3K9me2 loss coincided with fewer alveolar type 2 (AT2) cell progenitors and reduced alveolar regeneration but increased the frequency and activity of multipotent bronchioalveolar stem cells (BASCs) and bronchiolar progenitor club cells. H3K9me2 depletion in young mice decreased AT2 progenitor activity and impaired alveolar injury repair. Conversely, H3K9me2 depletion increased chromatin accessibility of bronchiolar cell genes, increased BASC frequency, and accelerated bronchiolar cell injury repair. These findings indicate that during aging, the epigenetic regulation that coordinates lung progenitor cells' regenerative responses becomes dysregulated, aiding our understanding of age-related susceptibility to lung disease.


Subject(s)
Epigenesis, Genetic , Lung , Mice , Animals , Lung/metabolism , Chromatin/metabolism , Methylation , Protein Processing, Post-Translational
7.
Front Immunol ; 14: 1168676, 2023.
Article in English | MEDLINE | ID: mdl-37187742

ABSTRACT

Acute Respiratory Distress Syndrome (ARDS) and Ulcerative Colitis (UC) are each characterized by tissue damage and uncontrolled inflammation. Neutrophils and other inflammatory cells play a primary role in disease progression by acutely responding to direct and indirect insults to tissue injury and by promoting inflammation through secretion of inflammatory cytokines and proteases. Vascular Endothelial Growth Factor (VEGF) is a ubiquitous signaling molecule that plays a key role in maintaining and promoting cell and tissue health, and is dysregulated in both ARDS and UC. Recent evidence suggests a role for VEGF in mediating inflammation, however, the molecular mechanism by which this occurs is not well understood. We recently showed that PR1P, a 12-amino acid peptide that binds to and upregulates VEGF, stabilizes VEGF from degradation by inflammatory proteases such as elastase and plasmin thereby limiting the production of VEGF degradation products (fragmented VEGF (fVEGF)). Here we show that fVEGF is a neutrophil chemoattractant in vitro and that PR1P can be used to reduce neutrophil migration in vitro by preventing the production of fVEGF during VEGF proteolysis. In addition, inhaled PR1P reduced neutrophil migration into airways following injury in three separate murine acute lung injury models including from lipopolysaccharide (LPS), bleomycin and acid. Reduced presence of neutrophils in the airways was associated with decreased pro-inflammatory cytokines (including TNF-α, IL-1ß, IL-6) and Myeloperoxidase (MPO) in broncho-alveolar lavage fluid (BALF). Finally, PR1P prevented weight loss and tissue injury and reduced plasma levels of key inflammatory cytokines IL-1ß and IL-6 in a rat TNBS-induced colitis model. Taken together, our data demonstrate that VEGF and fVEGF may each play separate and pivotal roles in mediating inflammation in ARDS and UC, and that PR1P, by preventing proteolytic degradation of VEGF and the production of fVEGF may represent a novel therapeutic approach to preserve VEGF signaling and inhibit inflammation in acute and chronic inflammatory diseases.


Subject(s)
Acute Lung Injury , Colitis, Ulcerative , Respiratory Distress Syndrome , Animals , Mice , Rats , Acute Lung Injury/metabolism , Colitis, Ulcerative/drug therapy , Cytokines/metabolism , Disease Models, Animal , Inflammation/chemically induced , Interleukin-6 , Peptide Hydrolases , Peptides/adverse effects , Respiratory Distress Syndrome/metabolism , Vascular Endothelial Growth Factor A/metabolism
8.
Res Sq ; 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36993454

ABSTRACT

Alveolar type 2 (AT2) cells, the epithelial progenitor cells of the distal lung, are known to be the prominent cell of origin for lung adenocarcinoma. The regulatory programs that control chromatin and gene expression in AT2 cells during the early stages of tumor initiation are not well understood. Here, we dissected the response of AT2 cells to Kras activation and p53 loss (KP) using combined single cell RNA and ATAC sequencing in an established tumor organoid system. Multi-omic analysis showed that KP tumor organoid cells exhibit two major cellular states: one more closely resembling AT2 cells (SPC-high) and another with loss of AT2 identity (hereafter, Hmga2-high). These cell states are characterized by unique transcription factor (TF) networks, with SPC-high states associated with TFs known to regulate AT2 cell fate during development and homeostasis, and distinct TFs associated with the Hmga2-high state. CD44 was identified as a marker of the Hmga2-high state, and was used to separate organoid cultures for functional comparison of these two cell states. Organoid assays and orthotopic transplantation studies indicated that SPC-high cells have higher tumorigenic capacity in the lung microenvironment compared to Hmga2-high cells. These findings highlight the utility of understanding chromatin regulation in the early oncogenic versions of epithelial cells, which may reveal more effective means to intervene the progression of Kras-driven lung cancer.

9.
JCI Insight ; 8(1)2023 01 10.
Article in English | MEDLINE | ID: mdl-36454643

ABSTRACT

Dysfunction of alveolar epithelial type 2 cells (AEC2s), the facultative progenitors of lung alveoli, is implicated in pulmonary disease pathogenesis, highlighting the importance of human in vitro models. However, AEC2-like cells in culture have yet to be directly compared to their in vivo counterparts at single-cell resolution. Here, we performed head-to-head comparisons among the transcriptomes of primary (1°) adult human AEC2s, their cultured progeny, and human induced pluripotent stem cell-derived AEC2s (iAEC2s). We found each population occupied a distinct transcriptomic space with cultured AEC2s (1° and iAEC2s) exhibiting similarities to and differences from freshly purified 1° cells. Across each cell type, we found an inverse relationship between proliferative and maturation states, with preculture 1° AEC2s being most quiescent/mature and iAEC2s being most proliferative/least mature. Cultures of either type of human AEC2s did not generate detectable alveolar type 1 cells in these defined conditions; however, a subset of iAEC2s cocultured with fibroblasts acquired a transitional cell state described in mice and humans to arise during fibrosis or following injury. Hence, we provide direct comparisons of the transcriptomic programs of 1° and engineered AEC2s, 2 in vitro models that can be harnessed to study human lung health and disease.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Animals , Mice , Transcriptome , Alveolar Epithelial Cells/metabolism , Lung/pathology , Pulmonary Alveoli/pathology
10.
Cell Rep ; 39(2): 110662, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35417699

ABSTRACT

Lung progenitor cells are crucial for regeneration following injury, yet it is unclear whether lung progenitor cells can be functionally engrafted after transplantation. We transplanted organoid cells derived from alveolar type II (AT2) cells enriched by SCA1-negative status (SNO) or multipotent SCA1-positive progenitor cells (SPO) into injured mouse lungs. Transplanted SNO cells are retained in the alveolar regions, whereas SPO cells incorporate into airway and alveolar regions. Single-cell transcriptomics demonstrate that transplanted SNO cells are comparable to native AT2 cells. Transplanted SPO cells exhibit transcriptional hallmarks of alveolar and airway cells, as well as transitional cell states identified in disease. Transplanted cells proliferate after re-injury of recipient mice and retain organoid-forming capacity. Thus, lung epithelial organoid cells exhibit progenitor cell functions after reintroduction to the lung. This study reveals methods to interrogate lung progenitor cell potential and model transitional cell states relevant to pathogenic features of lung disease in vivo.


Subject(s)
Organoids , Spinocerebellar Ataxias , Animals , Cell Differentiation , Epithelial Cells , Lung , Mice , Stem Cells
11.
JCI Insight ; 7(6)2022 03 22.
Article in English | MEDLINE | ID: mdl-35315362

ABSTRACT

Type 2 alveolar epithelial cells (AT2s), facultative progenitor cells of the lung alveolus, play a vital role in the biology of the distal lung. In vitro model systems that incorporate human cells, recapitulate the biology of primary AT2s, and interface with the outside environment could serve as useful tools to elucidate functional characteristics of AT2s in homeostasis and disease. We and others recently adapted human induced pluripotent stem cell-derived AT2s (iAT2s) for air-liquid interface (ALI) culture. Here, we comprehensively characterize the effects of ALI culture on iAT2s and benchmark their transcriptional profile relative to both freshly sorted and cultured primary human fetal and adult AT2s. We find that iAT2s cultured at ALI maintain an AT2 phenotype while upregulating expression of transcripts associated with AT2 maturation. We then leverage this platform to assay the effects of exposure to clinically significant, inhaled toxicants including cigarette smoke and electronic cigarette vapor.


Subject(s)
Electronic Nicotine Delivery Systems , Induced Pluripotent Stem Cells , Pluripotent Stem Cells , Environmental Exposure , Epithelium , Humans , Induced Pluripotent Stem Cells/metabolism
13.
Cancer Discov ; 12(2): 562-585, 2022 02.
Article in English | MEDLINE | ID: mdl-34561242

ABSTRACT

SMARCA4/BRG1 encodes for one of two mutually exclusive ATPases present in mammalian SWI/SNF chromatin remodeling complexes and is frequently mutated in human lung adenocarcinoma. However, the functional consequences of SMARCA4 mutation on tumor initiation, progression, and chromatin regulation in lung cancer remain poorly understood. Here, we demonstrate that loss of Smarca4 sensitizes club cell secretory protein-positive cells within the lung in a cell type-dependent fashion to malignant transformation and tumor progression, resulting in highly advanced dedifferentiated tumors and increased metastatic incidence. Consistent with these phenotypes, Smarca4-deficient primary tumors lack lung lineage transcription factor activities and resemble a metastatic cell state. Mechanistically, we show that Smarca4 loss impairs the function of all three classes of SWI/SNF complexes, resulting in decreased chromatin accessibility at lung lineage motifs and ultimately accelerating tumor progression. Thus, we propose that the SWI/SNF complex via Smarca4 acts as a gatekeeper for lineage-specific cellular transformation and metastasis during lung cancer evolution. SIGNIFICANCE: We demonstrate cell-type specificity in the tumor-suppressive functions of SMARCA4 in the lung, pointing toward a critical role of the cell-of-origin in driving SWI/SNF-mutant lung adenocarcinoma. We further show the direct effects of SMARCA4 loss on SWI/SNF function and chromatin regulation that cause aggressive malignancy during lung cancer evolution.This article is highlighted in the In This Issue feature, p. 275.


Subject(s)
Adenocarcinoma of Lung/genetics , Cell Transformation, Neoplastic , DNA Helicases/genetics , Lung Neoplasms/genetics , Neoplasm Metastasis , Nuclear Proteins/genetics , Transcription Factors/genetics , Adenocarcinoma of Lung/secondary , Animals , Disease Models, Animal , Humans , Lung Neoplasms/pathology , Mice
14.
Article in English | MEDLINE | ID: mdl-34580078

ABSTRACT

It is now widely accepted that stem cells exist in various cancers, including lung cancer, which are referred to as cancer stem cells (CSCs). CSCs are defined in this context as the subset of tumor cells with the ability to form tumors in serial transplantation and cloning assays and form tumors at metastatic sites. Mouse models of lung cancer have shown that lung CSCs reside in niches that are essential for the maintenance of stemness, plasticity, enable antitumor immune evasion, and provide metastatic potential. Similar to normal lung stem cells, Notch, Wnt, and the Hedgehog signaling cascades have been recruited by the CSCs to regulate stemness and also provide therapy-driven resistance in lung cancer. Compounds targeting ß-catenin and Sonic hedgehog (Shh) activity have shown promising anti-CSC activity in preclinical murine models of lung cancer. Understanding CSCs and their niches in lung cancer can answer fundamental questions pertaining to tumor maintenance and associated immune regulation and escape that appear important in the quest to develop novel lung cancer therapies and enhance sensitivity to currently approved chemo-, targeted-, and immune therapeutics.


Subject(s)
Hedgehog Proteins , Lung Neoplasms , Animals , Hedgehog Proteins/therapeutic use , Humans , Lung/pathology , Mice , Neoplastic Stem Cells/pathology , Signal Transduction
15.
Cell Rep ; 35(5): 109055, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33905739

ABSTRACT

Coronavirus disease 2019 (COVID-19) is the latest respiratory pandemic caused by severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2). Although infection initiates in the proximal airways, severe and sometimes fatal symptoms of the disease are caused by infection of the alveolar type 2 (AT2) cells of the distal lung and associated inflammation. In this study, we develop primary human lung epithelial infection models to understand initial responses of proximal and distal lung epithelium to SARS-CoV-2 infection. Differentiated air-liquid interface (ALI) cultures of proximal airway epithelium and alveosphere cultures of distal lung AT2 cells are readily infected by SARS-CoV-2, leading to an epithelial cell-autonomous proinflammatory response with increased expression of interferon signaling genes. Studies to validate the efficacy of selected candidate COVID-19 drugs confirm that remdesivir strongly suppresses viral infection/replication. We provide a relevant platform for study of COVID-19 pathobiology and for rapid drug screening against SARS-CoV-2 and emergent respiratory pathogens.


Subject(s)
Alveolar Epithelial Cells/virology , COVID-19 Drug Treatment , COVID-19/pathology , Lung/virology , SARS-CoV-2/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Adult , Aged , Alanine/analogs & derivatives , Alanine/pharmacology , Alveolar Epithelial Cells/metabolism , COVID-19/metabolism , COVID-19/virology , Child, Preschool , Drug Discovery/methods , Epithelial Cells/virology , Epithelium/metabolism , Epithelium/virology , Female , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Lung/pathology , Male , Middle Aged , Models, Biological , Primary Cell Culture , Respiratory Mucosa/virology , SARS-CoV-2/physiology , Virus Replication/drug effects
16.
Cell ; 184(8): 1990-2019, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33811810

ABSTRACT

The population is aging at a rate never seen before in human history. As the number of elderly adults grows, it is imperative we expand our understanding of the underpinnings of aging biology. Human lungs are composed of a unique panoply of cell types that face ongoing chemical, mechanical, biological, immunological, and xenobiotic stress over a lifetime. Yet, we do not fully appreciate the mechanistic drivers of lung aging and why age increases the risk of parenchymal lung disease, fatal respiratory infection, and primary lung cancer. Here, we review the molecular and cellular aspects of lung aging, local stress response pathways, and how the aging process predisposes to the pathogenesis of pulmonary disease. We place these insights into context of the COVID-19 pandemic and discuss how innate and adaptive immunity within the lung is altered with age.


Subject(s)
Aging , Cellular Senescence , Lung Diseases , Lung , Adaptive Immunity , Aged , Aging/immunology , Aging/pathology , COVID-19/immunology , COVID-19/pathology , Humans , Lung/immunology , Lung/pathology , Lung Diseases/immunology , Lung Diseases/pathology , Oxidative Stress
17.
Am J Respir Cell Mol Biol ; 65(1): 22-29, 2021 07.
Article in English | MEDLINE | ID: mdl-33625958

ABSTRACT

The National Heart, Lung, and Blood Institute of the National Institutes of Health, together with the Longfonds BREATH consortium, convened a working group to review the field of lung regeneration and suggest avenues for future research. The meeting took place on May 22, 2019, at the American Thoracic Society 2019 conference in Dallas, Texas, United States, and brought together investigators studying lung development, adult stem-cell biology, induced pluripotent stem cells, biomaterials, and respiratory disease. The purpose of the working group was 1) to examine the present status of basic science approaches to tackling lung disease and promoting lung regeneration in patients and 2) to determine priorities for future research in the field.


Subject(s)
Induced Pluripotent Stem Cells , Lung Diseases , Lung/physiology , Regeneration , Respiratory Mucosa/physiology , Animals , Cell- and Tissue-Based Therapy , Congresses as Topic , Education , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/transplantation , Lung Diseases/metabolism , Lung Diseases/therapy , National Heart, Lung, and Blood Institute (U.S.) , United States
18.
Cell Stem Cell ; 27(4): 663-678.e8, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32891189

ABSTRACT

Mutant KRAS is a common driver in epithelial cancers. Nevertheless, molecular changes occurring early after activation of oncogenic KRAS in epithelial cells remain poorly understood. We compared transcriptional changes at single-cell resolution after KRAS activation in four sample sets. In addition to patient samples and genetically engineered mouse models, we developed organoid systems from primary mouse and human induced pluripotent stem cell-derived lung epithelial cells to model early-stage lung adenocarcinoma. In all four settings, alveolar epithelial progenitor (AT2) cells expressing oncogenic KRAS had reduced expression of mature lineage identity genes. These findings demonstrate the utility of our in vitro organoid approaches for uncovering the early consequences of oncogenic KRAS expression. This resource provides an extensive collection of datasets and describes organoid tools to study the transcriptional and proteomic changes that distinguish normal epithelial progenitor cells from early-stage lung cancer, facilitating the search for targets for KRAS-driven tumors.


Subject(s)
Induced Pluripotent Stem Cells , Organoids , Animals , Humans , Lung , Mice , Proteomics , Proto-Oncogene Proteins p21(ras)/genetics
19.
Cancer Res ; 80(18): 3841-3854, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32690724

ABSTRACT

Inactivation of SMARCA4/BRG1, the core ATPase subunit of mammalian SWI/SNF complexes, occurs at very high frequencies in non-small cell lung cancers (NSCLC). There are no targeted therapies for this subset of lung cancers, nor is it known how mutations in BRG1 contribute to lung cancer progression. Using a combination of gain- and loss-of-function approaches, we demonstrate that deletion of BRG1 in lung cancer leads to activation of replication stress responses. Single-molecule assessment of replication fork dynamics in BRG1-deficient cells revealed increased origin firing mediated by the prelicensing protein, CDC6. Quantitative mass spectrometry and coimmunoprecipitation assays showed that BRG1-containing SWI/SNF complexes interact with RPA complexes. Finally, BRG1-deficient lung cancers were sensitive to pharmacologic inhibition of ATR. These findings provide novel mechanistic insight into BRG1-mutant lung cancers and suggest that their dependency on ATR can be leveraged therapeutically and potentially expanded to BRG1-mutant cancers in other tissues. SIGNIFICANCE: These findings indicate that inhibition of ATR is a promising therapy for the 10% of non-small cell lung cancer patients harboring mutations in SMARCA4/BRG1. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/18/3841/F1.large.jpg.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Carcinoma, Non-Small-Cell Lung/genetics , DNA Helicases/genetics , Gene Deletion , Lung Neoplasms/genetics , Nuclear Proteins/genetics , Transcription Factors/genetics , Animals , Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone , DNA Helicases/deficiency , Disease Progression , Female , Forkhead Transcription Factors , Gene Editing , Humans , Immunoprecipitation , Mass Spectrometry , Mice , Mice, Inbred C57BL , Mice, Nude , Nuclear Proteins/deficiency , Nuclear Proteins/metabolism , Sequence Analysis, RNA , Transcription Factors/deficiency
20.
Cell ; 180(1): 20-22, 2020 01 09.
Article in English | MEDLINE | ID: mdl-31951518

ABSTRACT

Idiopathic pulmonary fibrosis is a fatal disease involving destruction of the lung alveolar structure. In this issue of Cell, Wu et al. (2020) show that impaired alveolar (AT2) stem cells produce mechanical tension that leads to spatially regulated fibrosis, initiating a new chapter in understanding what underlies the periphery to center progression of this lung disease.


Subject(s)
Alveolar Epithelial Cells , Pulmonary Fibrosis , Humans , Pulmonary Alveoli , Stem Cells , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL