Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 335
Filter
1.
Nanomaterials (Basel) ; 14(19)2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39404287

ABSTRACT

Climatic changes are reaching alarming levels globally, seriously impacting the environment. To address this environmental crisis and achieve carbon neutrality, transitioning to hydrogen energy is crucial. Hydrogen is a clean energy source that produces no carbon emissions, making it essential in the technological era for meeting energy needs while reducing environmental pollution. Abundant in nature as water and hydrocarbons, hydrogen must be converted into a usable form for practical applications. Various techniques are employed to generate hydrogen from water, with solar hydrogen production-using solar light to split water-standing out as a cost-effective and environmentally friendly approach. However, the widespread adoption of hydrogen energy is challenged by transportation and storage issues, as it requires compressed and liquefied gas storage tanks. Solid hydrogen storage offers a promising solution, providing an effective and low-cost method for storing and releasing hydrogen. Solar hydrogen generation by water splitting is more efficient than other methods, as it uses self-generated power. Similarly, solid storage of hydrogen is also attractive in many ways, including efficiency and cost-effectiveness. This can be achieved through chemical adsorption in materials such as hydrides and other forms. These methods seem to be costly initially, but once the materials and methods are established, they will become more attractive considering rising fuel prices, depletion of fossil fuel resources, and advancements in science and technology. Solid oxide fuel cells (SOFCs) are highly efficient for converting hydrogen into electrical energy, producing clean electricity with no emissions. If proper materials and methods are established for solar hydrogen generation and solid hydrogen storage under ambient conditions, solar light used for hydrogen generation and utilization via solid oxide fuel cells (SOFCs) will be an efficient, safe, and cost-effective technique. With the ongoing development in materials for solar hydrogen generation and solid storage techniques, this method is expected to soon become more feasible and cost-effective. This review comprehensively consolidates research on solar hydrogen generation and solid hydrogen storage, focusing on global standards such as 6.5 wt% gravimetric capacity at temperatures between -40 and 60 °C. It summarizes various materials used for efficient hydrogen generation through water splitting and solid storage, and discusses current challenges in hydrogen generation and storage. This includes material selection, and the structural and chemical modifications needed for optimal performance and potential applications.

2.
ACS Appl Mater Interfaces ; 16(39): 52739-52752, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39287563

ABSTRACT

In this study, we prepared a hybrid film incorporating the MnFeO3-decorated conducting two-dimensional (2D) MXene sheet-suspended [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) electron transfer layer (ETL) for the perovskite solar cells (PSCs) and detectors. The incorporation of MXene-MnFeO3 with the PCBM ETL could drive exceptional conducting features for the PSCs. Moreover, the presence of MXene-MnFeO3 facilitated superior charge transfer pathways, thereby enhancing the electron extraction and collection processes. This enhancement was directed to improve the electron mobility within the device, resulting in high photocurrents. The designed interface engineering with the MXene-MnFeO3 nanocomposite-tuned PCBM ETL has produced a remarkable power conversion efficiency of 17.79% ± 0.27. Moreover, X-ray detectors employing PCBM modulated with the MXene-MnFeO3 ETL achieved notable performance metrics including 18.47 µA/cm2 CCD-DCD, 5.53 mA/Gy·cm2 sensitivity, 7.64 × 10-4 cm2/V·s electron mobility, and 1.51 × 1015 cm2/V·s trap density.

3.
Micromachines (Basel) ; 15(9)2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39337786

ABSTRACT

This study investigates the operational characteristics of AlGaN/GaN high-electron-mobility transistors (HEMTs) by employing various passivation materials with different dielectric constants and passivation structures. To ensure the simulation reliability, the parameters were calibrated based on the measured data from the fabricated basic Si3N4 passivation structure of the HEMT. The Si3N4 passivation material was replaced with high-k materials, such as Al2O3 and HfO2, to improve the breakdown voltage. The Al2O3 and HfO2 passivation structures achieved breakdown voltage improvements of 6.62% and 17.45%, respectively, compared to the basic Si3N4 passivation structure. However, the increased parasitic capacitances reduced the cut-off frequency. To mitigate this reduction, the operational characteristics of hybrid and partial passivation structures were analyzed. Compared with the HfO2 passivation structure, the HfO2 partial passivation structure exhibited a 7.6% reduction in breakdown voltage but a substantial 82.76% increase in cut-off frequency. In addition, the HfO2 partial passivation structure exhibited the highest Johnson's figure of merit. Consequently, considering the trade-off relationship between breakdown voltage and frequency characteristics, the HfO2 partial passivation structure emerged as a promising candidate for high-power and high-frequency AlGaN/GaN HEMT applications.

4.
Food Chem ; 463(Pt 2): 141200, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39276557

ABSTRACT

Cyanide ion was derivatized with o-phthalaldehyde and 3-mercaptopropionic acid for high-performance liquid chromatography-diode array detector analysis. The structure was elucidated using nuclear magnetic resonance spectroscopy and ultra-high performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry. Method validation was conducted for three distillation methods to analyze cyanogenic glycosides, cyanohydrins, and free cyanide in fruit syrup. Acid-aided distillation only detected free cyanide, while direct distillation detected both free cyanide and cyanohydrins, and enzyme-aided distillation reflected all three types. These approaches were applied to stone fruit syrups in South Korean markets and households. Among tested, maesil (Prunus mume) syrup contained the highest amount of total cyanide, reaching a maximum of 21.9 mg/kg (cyanide ion equivalent), compared to other syrups. Investigation of cyanide composition changes during maesil syrup production revealed that free cyanide occupies the lowest proportion. Cyanogenic glycosides degraded gradually during aging, while cyanohydrins remained the majority after 12 months aging.

5.
Food Sci Biotechnol ; 33(13): 3047-3056, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39220314

ABSTRACT

This study investigated the effects of alkaline solutions on the production and characteristics of mung bean proteins (MBPs). MBPs were prepared using alkaline solutions of NaOH, NaHCO3, and Na2CO3 and designated MPN, MPH, and MPC, respectively. The yield, protein recovery, and crude protein content of MBP were not significantly different at different alkali concentrations (0.01-0.1%). Although there was no significant difference in MBP yield between alkali types, protein recovery and crude protein content increased in the following order: MPN > MPC > MPH. The essential and branched-chain amino acid contents, molecular weight distribution, and ζ-potential did not differ between MBPs. Regarding MBP pH-dependent solubility, MPN solubility was lower at pH 6-8 than that of MPH and MPC. This pattern was commonly observed for other physical properties. Overall, MBP was prepared using NaHCO3, and Na2CO3 and its functional properties were better when Na2CO3 was used than when NaOH was used. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-024-01624-x.

6.
Food Sci Biotechnol ; 33(13): 3057-3065, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39220320

ABSTRACT

This study investigated the suitability of a potato starch (NP)-Dodamssal rice starch (DD) mixture to replace acetylated potato starch (AP) in long-life noodles. Wheat flour (WF) was replaced with AP and NP in 20% of WF, and NP was replaced with DD in 10-50% of NP. The swelling power of the WF-AP mixture was similar to that of all the WF-NP-DD mixtures. The melting enthalpies of the WF-NP-DD mixtures were slightly higher than those of the WF-AP mixtures. The pasting viscosity decreased with increasing DD content of the mixtures. The G' of all the WF-NP-DD mixtures was higher than that of the WF-AP mixture over the temperature profile, and similar G' patterns over time were observed. The tensile strengths of noodles by the WF-NP-DD mixtures were similar to those obtained using the WF and WF-AP mixture. Overall, NP-DD mixtures have the potential to replace AP when mixed with WF. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-024-01628-7.

7.
J Korean Med Sci ; 39(35): e241, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39252683

ABSTRACT

BACKGROUND: Blood pressure readings taken before anesthesia often influence the decision to delay or cancel elective surgeries. However, the implications of these specific blood pressure values, especially how they compare to baseline, on postoperative in-hospital 30-day mortality remain underexplored. This research aimed to examine the effect of discrepancies between the baseline blood pressure evaluated in the ward a day before surgery, and the blood pressure observed just before the administration of anesthesia, on the postoperative mortality risks. METHODS: The study encompassed 60,534 adults scheduled for non-cardiac surgeries at a tertiary care center in Seoul, Korea. Baseline blood pressure was calculated as the mean of the blood pressure readings taken within 24 hours prior to surgery. The preanesthetic blood pressure was the blood pressure measured right before the administration of anesthesia. We focused on in-hospital 30-day mortality as the primary outcome. RESULTS: Our research revealed that a lower preanesthetic systolic or mean blood pressure that deviates by 20 mmHg or more from baseline significantly increased the risk of 30-day mortality. This association was particularly pronounced in individuals with a history of hypertension and those aged 65 and above. Higher preanesthetic blood pressure was not significantly associated with an increased risk of 30-day mortality. CONCLUSION: We found that a lower preanesthetic blood pressure compared to baseline significantly increased the 30-day postoperative mortality risk, whereas a higher preanesthetic blood pressure did not. Our study emphasizes the critical importance of accounting for variations in both baseline and preanesthetic blood pressure when assessing surgical risks and outcomes.


Subject(s)
Blood Pressure , Humans , Male , Female , Middle Aged , Aged , Hypertension/mortality , Anesthesia , Adult , Risk Factors , Hospital Mortality , Republic of Korea , Postoperative Complications/mortality , Postoperative Period , Blood Pressure Determination , Tertiary Care Centers
8.
Antibiotics (Basel) ; 13(7)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39061302

ABSTRACT

This study deals with the facile synthesis of a single-pot chemical technique for chitosan-curcumin (CUR)-based hybrid nanocomposites with nanostructured graphene oxide (GO) and copper oxide (CuO) as the antibacterial and cytotoxic drugs. The physicochemical properties of synthesized hybrid nanocomposites such as CS-GO, CS-CuO, CS-CUR-GO, and CS-CUR-GO/CuO were confirmed with various advanced tools. Moreover, the in vitro drug release profile of the CS-CUR-GO/CuO nanocomposite exhibited sustained and controlled release during different time intervals. Also, the antibacterial activity of the CS-CUR-GO/CuO hybrid nanocomposite presented the maximum bactericidal effect against Staphylococcus aureus and Escherichia coli pathogens. The hybrid nanocomposites revealed improved cytotoxicity behaviour against cultured mouse fibroblast cells (L929) via cell adhesion, DNA damage, and proliferation. Thus, the chitosan-based hybrid nanocomposites offer rich surface area, biocompatibility, high oxidative stress, and bacterial cell disruption functionalities as a potential candidate for antibacterial and cytotoxicity applications.

9.
Nanomaterials (Basel) ; 14(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38998734

ABSTRACT

The reuse of waste materials has recently become appealing due to pollution and cost reduction factors. Using waste materials can reduce environmental pollution and product costs, thus promoting sustainability. Approximately 95% of calcium carbonate-containing waste eggshells end up in landfills, unused. These eggshells, a form of bio-waste, can be repurposed as catalytic electrode material for various applications, including supercapacitors, after being converted into CaO. Similarly, used waste battery electrode materials pose environmental hazards if not properly recycled. Various types of batteries, particularly lithium-ion batteries, are extensively used worldwide. The recycling of used lithium-ion batteries has become less important considering its low economic benefits. This necessitates finding alternative methods to recover and reuse the graphite rods of spent batteries. Therefore, this study reports the conversion of waste eggshell into calcium oxide by high-temperature calcination and extraction of nanographite from spent batteries for application in energy storage fields. Both CaO and CaO/graphite were characterized for their structural, morphological, and chemical compositions using XRD, SEM, TEM, and XPS techniques. The prepared CaO/graphite nanocomposite material was evaluated for its efficiency in electrochemical supercapacitor applications. CaO and its composite with graphite powder obtained from used lithium-ion batteries demonstrated improved performance compared to CaO alone for energy storage applications. Using these waste materials for electrochemical energy storage and conversion devices results in cheaper, greener, and sustainable processes. This approach not only aids in energy storage but also promotes sustainability through waste management by reducing landfills.

10.
Sci Rep ; 14(1): 11946, 2024 05 25.
Article in English | MEDLINE | ID: mdl-38789574

ABSTRACT

Spinal cord injury (SCI) leads to motor and sensory impairment below the site of injury, thereby necessitating rehabilitation. An enriched environment (EE) increases social interaction and locomotor activity in a mouse model, similar to human rehabilitation. However, the impact of EE on presynaptic plasticity in gene expression levels remains unclear. Hence, this study aimed to investigate the therapeutic potential of EE in an SCI mouse model. Mice with spinal cord contusion were divided into two groups: those housed in standard cages (control) and those in EE conditions (EE). Each group was housed separately for either 2- or 8-weeks post-injury, after which RNA sequencing was performed and compared to a sham group (receiving only a dorsal laminectomy). The synaptic vesicle cycle (SVC) pathway and related genes showed significant downregulation after SCI at both time points. Subsequently, we investigated whether exposure to EE for 2- and 8-weeks post-SCI could modulate the SVC pathway and its related genes. Notably, exposure to EE for 8 weeks resulted in a marked reversal effect of SVC-related gene expression, along with stimulation of axon regeneration and mitigation of locomotor activity loss. Thus, prolonged exposure to EE increased presynaptic activity, fostering axon regeneration and functional improvement by modulating the SVC in the SCI mouse model. These findings suggest that EE exposure proves effective in inducing activity-dependent plasticity, offering a promising therapeutic approach akin to rehabilitation training in patients with SCI.


Subject(s)
Disease Models, Animal , Spinal Cord Injuries , Synaptic Vesicles , Animals , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/rehabilitation , Spinal Cord Injuries/metabolism , Mice , Synaptic Vesicles/metabolism , Locomotion , Female , Neuronal Plasticity , Environment , Recovery of Function , Mice, Inbred C57BL , Nerve Regeneration
11.
Tree Physiol ; 44(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38775218

ABSTRACT

Energy deprivation triggers various physiological, biochemical and molecular changes in plants under abiotic stress. We investigated the oxidative damages in the high altitude grown conifer Korean fir (Abies koreana) exposed to waterlogging stress. Our experimental results showed that waterlogging stress led to leaf chlorosis, 35 days after treatment. A significant decrease in leaf fresh weight, chlorophyll and sugar content supported this phenotypic change. Biochemical analysis showed a significant increase in leaf proline, lipid peroxidase and 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical content of waterlogged plants. To elucidate the molecular mechanisms, we conducted RNA-sequencing (RNA-seq) and de novo assembly. Using RNA-seq analysis approach and filtering (P < 0.05 and false discovery rate <0.001), we obtained 134 unigenes upregulated and 574 unigenes downregulated. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis placed the obtained differentially expressed unigenes in α-linoleic pathway, fatty acid degradation, glycosis, glycolipid metabolism and oligosaccharide biosynthesis process. Mapping of unigenes with Arabidopsis using basic local alignment search tool for nucleotides showed several critical genes in photosynthesis and carbon metabolism downregulated. Following this, we found the repression of multiple nitrogen (N) assimilation and nucleotide biosynthesis genes including purine metabolism. In addition, waterlogging stress reduced the levels of polyunsaturated fatty acids with a concomitant increase only in myristic acid. Together, our results indicate that the prolonged snowmelt may cause inability of A. koreana seedlings to lead the photosynthesis normally due to the lack of root intercellular oxygen and emphasizes a detrimental effect on the N metabolic pathway, compromising this endangered tree's ability to be fully functional under waterlogging stress.


Subject(s)
Fatty Acids , Nitrogen , Nitrogen/metabolism , Fatty Acids/metabolism , Plant Leaves/metabolism , Plant Leaves/physiology , Stress, Physiological , Plant Necrosis and Chlorosis , Gene Expression Regulation, Plant , Endangered Species
12.
Hepatology ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38739848

ABSTRACT

BACKGROUND AND AIMS: A new term, metabolic dysfunction-associated steatotic liver disease (MASLD), has been proposed by a multi-society expert panel. However, it remains unclear whether hepatic steatosis per se in MASLD contributes to an increased risk of mortality in individuals with any cardio-metabolic risk factor (CMRF), which is also a significant risk factor for increased mortality. This study aimed to compare all-cause and cause-specific mortality between the "MASLD/MetALD" and "no steatotic liver disease (SLD)" groups in individuals with any CMRF. APPROACH AND RESULTS: A population-based cohort study was conducted using 10,750 participants of the Third National Health and Nutrition Examination Survey. All-cause and cause-specific (cardiovascular, cancer, diabetes, and liver) mortality risks were compared between the "MASLD," "MetALD," and "no SLD" groups using the Cox proportional hazards model with complex survey design weights, adjusted for confounders. Over 26 years, the "MASLD" group did not show significantly increased all-cause (adjusted HR 1.04[95% CI: 0.95-1.14], p = 0.413), cardiovascular (0.88 [0.75-1.04], p = 0.139), or cancer (1.06[0.84-1.33], p = 0.635) mortality risk compared to the "no SLD" group in individuals with any CMRF. The MetALD group was associated with increased all-cause (1.41 [1.05-1.89], p = 0.022), cancer (2.35 [1.33-4.16], p = 0.004), and liver (15.04 [2.96-76.35], p = 0.002) mortality risk compared with the no SLD group. This trend was more pronounced in the MetALD group with advanced fibrosis assessed by Fibrosis-4 (FIB-4). CONCLUSIONS: In individuals with CMRF, the presence of steatotic liver disease (MASLD) alone did not increase the risk of mortality, except in cases with more alcohol consumption (MetALD). Therefore controlling metabolic risk factors and reducing alcohol consumption in people with MASLD or MetALD will be crucial steps to improve long-term health outcomes.

13.
Sci Rep ; 14(1): 8602, 2024 04 13.
Article in English | MEDLINE | ID: mdl-38615106

ABSTRACT

Although the esophageal stethoscope is used for continuous auscultation during general anesthesia, few studies have investigated phonocardiographic data as a continuous hemodynamic index. In this study, we aimed to induce hemodynamic variations and clarify the relationship between the heart sounds and hemodynamic variables through an experimental animal study. Changes in the cardiac contractility and vascular resistance were induced in anesthetized pigs by administering dobutamine, esmolol, phenylephrine, and nicardipine. In addition, a decrease in cardiac output was induced by restricting the venous return by clamping the inferior vena cava (IVC). The relationship between the hemodynamic changes and changes in the heart sound indices was analyzed. Experimental data from eight pigs were analyzed. The mean values of the correlation coefficients of changes in S1 amplitude (ΔS1amp) with systolic blood pressure (ΔSBP), pulse pressure (ΔPP), and ΔdP/dt during dobutamine administration were 0.94, 0.96, and 0.96, respectively. The mean values of the correlation coefficients of ΔS1amp with ΔSBP, ΔPP, and ΔdP/dt during esmolol administration were 0.80, 0.82, and 0.86, respectively. The hemodynamic changes caused by the administration of phenylephrine and nicardipine did not correlate significantly with changes in the heart rate. The S1 amplitude of the heart sound was significantly correlated with the hemodynamic changes caused by the changes in cardiac contractility but not with the variations in the vascular resistance. Heart sounds can potentially provide a non-invasive monitoring method to differentiate the cause of hemodynamic variations.


Subject(s)
Heart Sounds , Propanolamines , Animals , Swine , Dobutamine/pharmacology , Nicardipine , Hemodynamics , Phenylephrine/pharmacology
14.
Polymers (Basel) ; 16(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38674968

ABSTRACT

Polymethyl methacrylate (PMMA) is an interesting polymer employed in various applications due to its outstanding properties. However, its electrical and mechanical properties can be further improved by incorporating nanoparticles, and in particular, PMMA nanocomposite with nanoparticles provides various multifunctional properties. This work reports PMMA nanocomposite preparation and structural and optical characterizations incorporating carbon nanotubes (CNTs), TiO2 nanoparticles, and carbon quantum dots (CQDs). CNT/PMMA, TiO2/PMMA, and CQD/PMMA nanocomposite freestanding films were prepared using a simple solution method. Various properties of the prepared composite films were analyzed using scanning electron microscopy, X-ray diffraction, photoluminescence, Fourier transform infrared, and UV-Vis and Raman spectroscopy. Optical parameters and photocatalytic dye degradation for the films are reported, focusing on the properties of the materials. The CNT/PMMA, TiO2/PMMA, and CQD/PMMA films achieved, respectively, good electrical conductivity, photodegradation, and fluorescence compared with other composite films.

15.
Sci Rep ; 14(1): 7436, 2024 03 28.
Article in English | MEDLINE | ID: mdl-38548901

ABSTRACT

CRISPR/Cas9 technology has effectively targeted cancer-specific oncogenic hotspot mutations or insertion-deletions. However, their limited prevalence in tumors restricts their application. We propose a novel approach targeting passenger single nucleotide variants (SNVs) in haploinsufficient or essential genes to broaden therapeutic options. By disrupting haploinsufficient or essential genes through the cleavage of DNA in the SNV region using CRISPR/Cas9, we achieved the selective elimination of cancer cells without affecting normal cells. We found that, on average, 44.8% of solid cancer patients are eligible for our approach, a substantial increase compared to the 14.4% of patients with CRISPR/Cas9-applicable oncogenic hotspot mutations. Through in vitro and in vivo experiments, we validated our strategy by targeting a passenger mutation in the essential ribosomal gene RRP9 and haploinsufficient gene SMG6. This demonstrates the potential of our strategy to selectively eliminate cancer cells and expand therapeutic opportunities.


Subject(s)
CRISPR-Cas Systems , Neoplasms , Humans , Genes, Essential , Mutation , Nucleotides , Gene Editing , Neoplasms/genetics , Neoplasms/therapy
16.
Environ Pollut ; 347: 123699, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38460588

ABSTRACT

As global air pollution, particularly fine particulate matter (PM2.5), has become a major environmental problem, various PM2.5 mitigation technologies including green infrastructure have received significant attention. However, owing to spatial constraints on urban greening, there is a lack of management plans for urban forests to efficiently mitigate PM2.5. In this study, we assessed the PM2.5 reduction capabilities of Pinus densiflora (Korean red pine) and Quercus acutissima (sawtooth oak) by measuring the changes of PM2.5 concentrations using an experimental chamber system. In addition, the PM2.5 reduction efficiency in 90 min (PMRE90) and the amount of PM2.5 reduction per leaf area (PMRLA) were compared based on arrangement structures and density levels. The results showed that the PM2.5 reduction by plants was significantly greater than that of the control experiment without any plants, and an additional reduction effect of approximately 1.38 times was induced by a 1.5 m s-1 air flow. The PMRE90 of Korean red pine was the highest at medium density. In contrast, the PMRE90 of sawtooth oak was the highest at high density. The PMRLA of both species was highest at low densities. The different responses of the species to total reduction were well explained by total leaf area (TLA). The PMRE90 of both species was positively correlated with TLA. The PMRLA of sawtooth oak was approximately 2.3 times greater than that of Korean red pine. However, there were no significant differences in both PMRE90 and PMRLA between the arrangement structures. Our findings reveal the potential mechanisms of vegetation in reducing PM2.5 according to arrangement structure and density. This highlights the importance of efficiently using urban green spaces with spatial constraints on PM2.5 mitigation in the future.


Subject(s)
Air Pollutants , Pinus , Quercus , Trees/chemistry , Particulate Matter/analysis , Republic of Korea , Air Pollutants/analysis
17.
J Clin Med ; 13(2)2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38256575

ABSTRACT

Acne scars, particularly atrophic ones, present a persistent challenge in cosmetic medicine and surgery, requiring extended and multifaceted treatment approaches. Poly-(lactic acid) injectable fillers show promise in managing atrophic acne scars by stimulating collagen synthesis. However, the utilization of needle-free injectors for delivering poly-(lactic acid) into scars remains an area requiring further exploration. In this article, a summary of the latest advancements in needle-free jet injectors is provided, specifically highlighting the variations in jet-producing mechanisms. This summary emphasizes the differences in how these mechanisms operate, offering insights into the evolving technology behind needle-free injection systems. The literature review revealed documented cases focusing on treating atrophic acne scars using intralesional poly-(lactic acid) injections. The results of these clinical studies could be supported by separate in vitro and animal studies, elucidating the feasible pathways through which this treatment operates. However, there is limited information on the use of needle-free jet injectors for the intradermal delivery of poly-(lactic acid). Clinical cases of atrophic acne scar treatment are presented to explore this novel treatment concept, the needle-free delivery of poly-(lactic acid) using a jet pressure-based injector. The treatment demonstrated efficacy with minimal adverse effects, suggesting its potential for scar treatment. The clinical efficacy was supported by histological evidence obtained from cadaver skin, demonstrating an even distribution of injected particles in all layers of the dermis. In conclusion, we suggest that novel needle-free injectors offer advantages in precision and reduce patient discomfort, contributing to scar improvement and skin rejuvenation. Further comprehensive studies are warranted to substantiate these findings and ascertain the efficacy of this approach in scar treatment on a larger scale.

18.
Int J Biol Macromol ; 257(Pt 1): 128598, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38056742

ABSTRACT

A wound healing substitute promotes rapid tissue regeneration and protects wound sites from microbial contamination. The silver-based antiseptic frequently moist skin stains, burns and irritation, penetrates deep wounds and protects against pathogenic infections. Thus, we formulated a novel fibrin/chitosan encapsulated silver nanoparticle (CH:F:SPG-CH:SNP) composites bandage accelerating the polymicrobial wound healing. Electrospinning method was employed to form the nano-porous, inexpensive, and biocompatible smart bandages. The structural, functional, and mechanical properties were analyzed for the prepared composites. The biological capacity of prepared CH:F:SPG-CH:SNP bandage was assessed against NIH-3 T3 fibroblast and HaCaT cell lines. In vitro hemolytic assays using red blood cells were extensively studied and explored the low hemolytic effect (4.5 %). In addition, the improved drug delivery nature captured for the CH:F:SPG-CH:SNP composite bandage. Antibacterial experiments were achieved against Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus and Lactobacillus bulgaricus using zone inhibition method. Moreover, in-vivo wound healing efficacy of fabricated smart bandage was evaluated on the albino Wistar rats which revealed the significant improvement on the postoperative abdomen wounds.


Subject(s)
Chitosan , Metal Nanoparticles , Nanocomposites , Rats , Animals , Silver/pharmacology , Silver/chemistry , Chitosan/pharmacology , Chitosan/chemistry , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/chemistry , Wound Healing , Rats, Wistar , Nanocomposites/chemistry
19.
Int J Biol Macromol ; 256(Pt 1): 128458, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38016611

ABSTRACT

Cerium dioxide (CeO2) based nanomaterials have emerged as promising dermal equivalents, promoting fibroblast infiltration and tissues regeneration. To enhance the antibacterial and wound healing activity, herein chitosan (CS)-CeO2 combined nano titanium dioxide (TiO2) complex loaded polycaprolactone (PCL) nanohybrid (CS-CeO2/TiO2/PCL) scaffolds were prepared through casting method. The nanohybrid scaffolds' physiochemical, morphological, mechanical, and biological properties were evaluated using advanced analytical techniques. Fourier transform infrared spectroscopy spectrum evidently depicted the various intermolecular interactions on the nanohybrid scaffolds. The developed scaffold exhibited the high swelling behavior and good degradability and permeability which is beneficial for absorbing wound transudation to fasten the healing efficacy. Moreover, CS-CeO2/TiO2/PCL scaffolds owned the better antibacterial activity against bacterial strains E. coli and S. aureus. Also, MTT assay on fibroblast (NIH 3T3) cells and immortalized human keratinocytes (HaCaT) cells indicated improved cell viability and proliferation. In vivo results revealed that the fabricated scaffold full aid to complete wound closure after 14 days which showed CS-CeO2/TiO2/PCL as the significant wound dressing material with potential antibacterial immunity.


Subject(s)
Chitosan , Polyesters , Titanium , Humans , Chitosan/chemistry , Staphylococcus aureus , Escherichia coli , Anti-Bacterial Agents/chemistry , Wound Healing
20.
Osteoporos Int ; 35(4): 635-644, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38095696

ABSTRACT

Periodontal disease and increased missing teeth were associated with incident vertebral fractures. In contrast, professional dental cleaning and frequent tooth brushing, was associated with a lower risk of vertebral fracture. Better oral hygiene care attenuated the risk associated with dental diseases. PURPOSE: To investigate the association between oral health and the risk of vertebral fractures. METHODS: We included 2,532,253 individuals aged ≥40 years who underwent the Korean National Health Insurance Service health examinations in 2008 and followed up until December 31, 2017. We performed multivariable Cox proportional hazard regression analyses to evaluate the association between dental diseases and oral hygiene care and the risk of vertebral fractures. RESULTS: Over the 9.3-year median follow-up, 1.46% (n = 36,857) experienced vertebral fractures. Individuals with dental diseases had a higher risk of vertebral fracture than those without (hazard ratio [HR] 1.04, 95% confidence interval [CI]: 1.02-1.07 for periodontal diseases; 1.02, 1.00-1.05 for dental caries; 1.12, 1.05-1.20 for ≥15 missing teeth). Good oral hygiene care was associated with a lower vertebral fracture risk (HR 0.89, 95% CI: 0.86-0.91 for ≥1 time/year [vs. <1 time/year] of professional dental cleaning; 0.90, 0.87-0.93 for ≥2 times/day [vs. 0-1 time/day] of toothbrushing). The combined dental diseases was significantly associated with an increased vertebral fracture risk, whereas combined oral hygiene care was associated with further risk reduction. Better oral hygiene care reduced vertebral fracture risk associated with dental diseases (all P <0.001). CONCLUSION: Periodontal disease, dental caries, and an increased number of missing teeth were independently associated with higher risks for vertebral fractures. Conversely, improved oral hygiene care, such as personal dental cleaning and frequent tooth brushing, may modify vertebral fracture risks associated with dental disease.


Subject(s)
Dental Caries , Periodontal Diseases , Spinal Fractures , Humans , Oral Hygiene , Cohort Studies , Spinal Fractures/epidemiology , Spinal Fractures/etiology , Periodontal Diseases/complications , Periodontal Diseases/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL