Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 231
Filter
1.
J Anim Sci Technol ; 66(5): 905-919, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39398303

ABSTRACT

Porcine oocytes undergo in vitro maturation (IVM) for 42-44 h. During this period, most oocytes proceed to metaphase and then to pro-metaphase if the nucleus has sufficiently matured. Forty-four hours is sufficient for oocyte nuclear maturation but not for full maturation of the oocyte cytoplasm. This study investigated the influences of extension of the IVM duration with rapamycin treatment on molecular maturation factors. The phospho-p44/42 mitogen-activated protein kinase (MAPK) level was enhanced in comparison with the total p44/42 MAPK level after 52 h of IVM. Oocytes were treated with and without 10 µM rapamycin (10 R and 0 R, respectively) and examined after 52 h of IVM, whereas control oocytes were examined after 44 h of IVM. Phospho-p44/42 MAPK activity was upregulated the 10 R and 0 R oocytes than in control oocytes. The expression levels of maternal genes were highest in 10 R oocytes and were higher in 0 R oocytes than in control oocytes. Reactive oxygen species (ROS) activity was dramatically increased in 0 R oocytes but was similar in 10 R and control oocytes. The 10 R group exhibited an increased embryo development rate, a higher total cell number per blastocyst, and decreased DNA fragmentation. The mRNA level of development-related (POU5F1 and NANOG) mRNA, oocyte-apoptotic (BCL2L1) genes were highest in 10 R blastocysts. These results suggest that prolonged IVM duration with rapamycin treatment represses ROS production and increases expression of molecular maturation factors. Therefore, this is a good strategy to enhance the developmental capacity in porcine oocytes.

2.
Sci Rep ; 14(1): 21642, 2024 09 16.
Article in English | MEDLINE | ID: mdl-39285218

ABSTRACT

Metabolic dysfunction-associated fatty liver disease (MAFLD) is a common liver disease associated with obesity and is caused by the accumulation of ectopic fat without alcohol consumption. Coxsackievirus and adenovirus receptor (CAR) are vital for cardiac myocyte-intercalated discs and endothelial cell-to-cell tight junctions. CAR has also been reported to be associated with obesity and high blood pressure. However, its function in the liver is still not well understood. The liver of obese mice exhibit elevated CAR mRNA and protein levels. Furthermore, in the liver of patients with non-alcoholic steatohepatitis, CAR is reduced in hepatocyte cell-cell junctions compared to normal levels. We generated liver-specific CAR knockout (KO) mice to investigate the role of CAR in the liver. Body and liver weights were not different between wild-type (WT) and KO mice fed a paired or high-fat diet (HFD). However, HFD induced significant liver damage and lipid accumulation in CAR KO mice compared with WT mice. Additionally, inflammatory cytokines transcription, hepatic permeability, and macrophage recruitment considerably increased in CAR KO mice. We identified a new interaction partner of CAR using a protein pull-down assay and mass spectrometry. Apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3C (APOBEC3C) demonstrated a complex relationship with CAR, and hepatic CAR expression tightly regulated its level. Moreover, Apolipoprotein B (ApoB) and Low-density lipoprotein receptor (LDLR) levels correlated with APOBEC3C expression in the liver of CAR KO mice, suggesting that CAR may regulate lipid accumulation by controlling APOBEC3C activity. In this study, we showed that hepatic CAR deficiency increased cell-to-cell permeability. In addition, CAR deletion significantly increased hepatic lipid accumulation by inducing ApoB and LDLR expression. Although the underlying mechanism is unclear, CARs may be a target for the development of novel therapies for MAFLD.


Subject(s)
Coxsackie and Adenovirus Receptor-Like Membrane Protein , Liver , Mice, Knockout , Animals , Coxsackie and Adenovirus Receptor-Like Membrane Protein/metabolism , Coxsackie and Adenovirus Receptor-Like Membrane Protein/genetics , Liver/metabolism , Liver/pathology , Mice , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Diet, High-Fat/adverse effects , Humans , Hepatocytes/metabolism , Male , Mice, Inbred C57BL
3.
Ecotoxicol Environ Saf ; 285: 117075, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39305778

ABSTRACT

Off-target pesticide drift in paddy fields following unmanned aerial vehicle (UAV) spraying was evaluated using cellulose deposition samplers (CDSs). An analytical method for quantifying ferimzone Z and E isomers deposited on CDSs was developed using LC-MS/MS. The suitability of the CDS method was confirmed by comparing deposition patterns on CDSs with residue levels in rice plant samples. To assess pesticide deposition in paddy fields, CDSs were strategically placed at varying distances from target areas, followed by UAV spraying. The fungicide agrochemicals were applied with and without adjuvants, and wind direction affected the drift trajectory for all treatment groups. Adjuvants, particularly soy lecithin as the major component, significantly enhanced pesticide deposition within the spray pathway while reducing drift rates relatively by 47.9-68.0 %. Higher wind speeds were found to exacerbate drift, but adjuvant-treated sprays showed less variability in deposition patterns under these conditions. Pesticide residues in harvested brown rice were found to be below the maximum residue limits (MRLs), ensuring safety for consumption. These findings highlight the importance of selecting appropriate adjuvants in UAV-based pesticide applications to optimize deposition efficiency and minimize environmental contamination.

4.
Nat Commun ; 15(1): 7669, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39227369

ABSTRACT

SeS2 positive electrodes are promising components for the development of high-energy, non-aqueous lithium sulfur batteries. However, the (electro)chemical and structural evolution of this class of positive electrodes is not yet fully understood. Here, we use operando physicochemical measurements to elucidate the dissolution and deposition processes in the SeS2 positive electrodes during lithium sulfur cell charge and discharge. Our analysis of real-time imaging reveals the pivotal role of Se in the SeS2 nucleation process, while S enables selective depositions. During the initial discharge, SeS2 converts into Se and S separately, with the dissolved Se acting as nucleation sites due to their lower nucleation potential. The Se effectively catalyzes the growth of S particles, resulting in improved lithium sulfur battery performance compared to cells using positive electrodes containing only Se or S as active materials. By adjusting the Se-to-S ratio, we demonstrate that a low concentration of Se enables uniform catalytic sites, promotes the homogeneous distribution of S and favours improved lithium sulfur battery performance.

5.
Food Sci Anim Resour ; 44(5): 1167-1180, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39246538

ABSTRACT

This study aimed to investigate effects of chicken age on proliferation and differentiation capacity of muscle satellite cells (MSCs) and to determine total amino acid contents of cultured meat (CM) produced. Chicken MSCs (cMSCs) were isolated from hindlimb muscles of broiler chickens at 5-week-old (5W) and 19-embryonic-day (19ED), respectively. Proliferation abilities (population doubling time and cell counting kit 8) of cMSCs from 19ED were significantly higher than those from 5W (p<0.05). Likewise, both myotube formation area and expression of myosin heavy chain heavy of cMSCs from 19ED were significantly higher than those from 5W (p<0.05). After cMSCs were serially subcultured for long-term cultivation in 2D flasks to produce cultured meat tissue (CMT), total amino acid contents of CMT showed no significant difference between 5W and 19ED chickens (p>0.05). This finding suggests that cMSCs from chicken embryos are more suitable for improving the production efficiency of CM than those derived from young chickens.

6.
Food Sci Anim Resour ; 44(5): 1156-1166, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39246536

ABSTRACT

Texture is a major challenge in addressing the need to find sustainable meat alternatives, as consumers desire alternative meat to have a sensory profile like meat. In this study, the fabrication of imitated muscle fiber (IMF) is performed by introducing different kinds of protein sources, with an effective bottom-up technique- wet spinning. Herein, the protein sources (pea protein isolate, wheat protein, and myofibrillar paste) were combined with sodium alginate to stimulate the bonding with the coagulation solution for fabrication. It has been found that the fabrication of IMF is possible using all the protein sources, however, due to the difference in protein structure, a significant difference was observed in quality characteristics compared to conventional meat. Additionally, combination of wheat protein and pea protein isolate has given similar values as conventional meat in terms of some of the texture profiles and Warner-Bratzler shear force. In general, the optimization of protein sources for wet spinning can provides a novel way for the production of edible fiber of alternative meat.

7.
Drug Metab Dispos ; 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39168524

ABSTRACT

In this study, the nonclinical pharmacokinetics of OLX702A-075-16, an RNA interference (RNAi) therapeutic currently in development, were investigated. OLX702A-075-16 is a novel N-acetylgalactosamine conjugated asymmetric small-interfering RNA (GalNAc-asiRNA) used for the treatment of an undisclosed liver disease. Its unique 16/21-mer asymmetric structure reduces nonspecific off-target effects without compromising efficacy. We investigated the plasma concentration, tissue distribution, metabolism, and renal excretion of OLX702A-075-16 following a subcutaneous administration in mice and rats. For bioanalysis, high-performance liquid chromatography with fluorescence detection (HPLC-FD) was used. The results showed rapid clearance from plasma (0.5 to 1.5 h of half-life) and predominant distribution to the liver, and/or kidney. Less than 1% of the liver concentration of OLX702A-075-16 was detected in the other tissues. Metabolite profiling using liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS) revealed that the intact duplex OLX702A-075-16 was the major compound in plasma. The GalNAc moiety was predominantly metabolized from the sense strand in the liver, with the unconjugated sense strand of OLX702A-075-16 accounting for more than 95% of the total exposure in the rat liver. Meanwhile, the antisense strand was metabolized by the sequential loss of nucleotides from the 3'-terminus by exonuclease, with the rat liver samples yielding the most diverse truncated forms of metabolites. Urinary excretion over 96 h was less than 1% of the administered dose in rats. High plasma protein binding of OLX702A-075-16 likely inhibited its clearance through renal filtration. Significance Statement This study presents the first comprehensive characterization of the in vivo pharmacokinetics of GalNAc-asiRNA. The pharmacokinetic insights gained from this research will aid in understanding toxicology and efficacy, optimizing delivery platforms, and improving the predictive power of preclinical species data for human applications.

8.
J Anim Sci Technol ; 66(4): 645-662, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39165738

ABSTRACT

Climate change, driven by the natural process of global warming, is a worldwide issue of significant concern because of its adverse effects on livestock output. The increasing trend of environmental temperature surging has drastically affected meat production and meat product quality, hence result in economic losses for the worldwide livestock business. Due to the increasing greenhouse gas emissions, the situation would get prolonged, and heat exposure-related stress is expected to worsen. Heat exposure causes metabolic and physiological disruptions in livestock. Ruminants and monogastric animals are very sensitive to heat stress due to their rate of metabolism, development, and higher production levels. Before slaughter, intense hot weather triggers muscle glycogen breakdown, producing pale, mushy, and exudative meat with less water-holding capacity. Animals exposed to prolonged high temperatures experience a decrease in their muscle glycogen reserves, producing dry, dark, and complex meat with elevated final pH and increased water-holding capacity. Furthermore, heat stress also causes oxidative stresses, especially secondary metabolites from lipid oxidation, severely affects the functionality of proteins, oxidation of proteins, decreasing shelf life, and food safety by promoting exfoliation and bacterial growth. Addressing the heat-related issues to retain the sustainability of the meat sector is an essential task that deserves an inclusive and comprehensive approach. Considering the intensity of the heat stress effects, this review has been designed primarily to examine the consequences of hot environment temperatures and related stresses on the quality and safety of meat and secondarily focus on cutting edge technology to reduce or alleviate the situational impact.

9.
Eur J Pharmacol ; 981: 176847, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39089463

ABSTRACT

Insomnia is one of the most common sleep disorders, affecting 10-15% of the global population. Because classical remedies used to treat insomnia have various side effects, new therapeutics for insomnia are attracting attention. In the present study, we found that N2-Ethyl-N4-(furan-2-ylmethyl) quinazoline-2,4-diamine (AR-001) has adenosine A1 receptor agonistic activity and exhibits hypnotic efficacy by decreasing sleep onset latency and increasing total sleep time in a pentobarbital-induced sleep model. This hypnotic effect of AR-001 was significantly inhibited by the adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). As a result of immunohistochemistry, AR-001 was shown to increase neural activity in the sleep-promoting region, ventrolateral preoptic nucleus (VLPO), and decrease neural activity in the wake-promoting region, basal forebrain (BF), and lateral hypothalamus (LH), and that these effects of AR-001 were significantly inhibited by DPCPX treatment. In addition, AR-001 increased adenosine A1 receptor mRNA levels in the hypothalamus. In conclusion, this study suggests that AR-001 has a hypnotic effect, at least partially, through adenosine A1 receptor and may have therapeutic potential for insomnia.


Subject(s)
Adenosine A1 Receptor Agonists , Hypnotics and Sedatives , Receptor, Adenosine A1 , Sleep , Animals , Receptor, Adenosine A1/metabolism , Receptor, Adenosine A1/genetics , Male , Hypnotics and Sedatives/pharmacology , Sleep/drug effects , Adenosine A1 Receptor Agonists/pharmacology , Quinazolines/pharmacology , Rats, Sprague-Dawley , Rats , Mice , Sleep Initiation and Maintenance Disorders/drug therapy , Furans/pharmacology , Hypothalamus/drug effects , Hypothalamus/metabolism , Xanthines/pharmacology , RNA, Messenger/metabolism , RNA, Messenger/genetics , Adenosine A1 Receptor Antagonists/pharmacology , Pentobarbital/pharmacology
10.
Biomol Ther (Seoul) ; 32(5): 601-610, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39091013

ABSTRACT

Tofacitinib, a Janus kinase (JAK) inhibitor used to treat rheumatoid arthritis, is metabolized through hepatic cytochrome P450 (CYP), specifically CYP3A1/2 and CYP2C11. Prolonged administration of rheumatoid arthritis medications is generally associated with an increased risk of renal toxicity. Loganin (LGN), an iridoid glycoside, has hepatorenal regenerative properties. This study investigates the potential of LGN to mitigate acute kidney injury (AKI) and its effects on the pharmacokinetics of tofacitinib in rats with cisplatin-induced AKI. Both intravenous and oral administration of tofacitinib to AKI rats significantly increased the area under the plasma concentration-time curve from time 0 to infinity (AUC) compared with control (CON) rats, an increase attributed to the decelerated non-renal clearance (CLNR) and renal clearance (CLR) of tofacitinib. Administration of LGN to AKI rats, however, protected kidneys from severe impairment, restoring the pharmacokinetic parameters (AUC, CLNR, and CLR) of tofacitinib to those observed in untreated CON rats, with partial recovery of kidney function, as evidenced by an increase in creatinine clearance (CLCR). Possible interactions between drugs and natural components should be considered, especially when co-administering both a drug and a natural extract containing LGN or iridoid glycosides to patients with kidney injury.

11.
Asia Pac J Oncol Nurs ; 11(6): 100490, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38827560

ABSTRACT

Objective: Bladder cancer survivors with neobladder experience changes in role performance and quality of life (QoL) due to various symptoms and problems, but related studies are limited. Therefore, this study attempted to explore the QoL and factors influencing it in bladder cancer survivors with neobladder. Methods: A cross-sectional descriptive design was used. Data were collected from 100 bladder cancer survivors with a neobladder using the European Organisation for Research and Treatment of Cancer QLQ-C30 and Muscle-Invasive Bladder Cancer Module, the Patient Activation Measure 13, the Enforced Social Dependency Scale, and the Multidimensional Scale of Perceived Social Support. Factors affecting the QoL were identified using multiple regression analysis. Results: QoL significantly differed by daily pad usage, need for clean intermittent catheterization, and role performance. QoL was correlated with urinary symptoms and problems, future perspective, abdominal bloating and flatulence, body image, role performance, and social support. Role performance, body image, and the need for clean intermittent catheterization were identified as the factors affecting QoL. Conclusions: The study highlights the importance of bladder cancer survivors continuing their roles at home, at work, and in society after neobladder reconstruction. Specifically, continuing recreational and social activity positively affects QoL, even if the activity range is modified. To help with their role performance, institutional support and changes in social perception are needed. Additionally, education and interventions, including body image enhancement, symptom management, and self-care, should be developed and applied to improve their QoL.

12.
Food Res Int ; 189: 114549, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38876607

ABSTRACT

In cultured meat (CM) production, Scaffolding plays an important role by aiding cell adhesion, growth, differentiation, and alignment. The existence of fibrous microstructure in connective and muscle tissues has attracted considerable interest in the realm of tissue engineering and triggered the interest of researchers to implement scaffolding techniques. A wide array of research efforts is ongoing in scaffolding technologies for achieving the real meat structure on the principality of biomedical research and to replace serum free CM production. Scaffolds made of animal-derived biomaterials are found efficient in replicating the extracellular matrix (ECM), thus focus should be paid to utilize animal byproducts for this purpose. Proper identification and utilization of plant-derived scaffolding biomaterial could be helpful to add diversified options in addition to animal derived sources and reduce in cost of CM production through scaffolds. Furthermore, techniques like electrospinning, modified electrospinning and 3D bioprinting should be focused on to create 3D porous scaffolds to mimic the ECM of the muscle tissue and form real meat-like structures. This review discusses recent advances in cutting edge scaffolding techniques and edible biomaterials related to structured CM production.


Subject(s)
Extracellular Matrix , Tissue Engineering , Tissue Scaffolds , Tissue Scaffolds/chemistry , Tissue Engineering/methods , Animals , Extracellular Matrix/chemistry , Meat , Biocompatible Materials/chemistry , Bioprinting/methods , Printing, Three-Dimensional , In Vitro Meat
13.
Foods ; 13(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38890969

ABSTRACT

To prevent pesticides from exceeding maximum residue limits (MRLs) in crops during export and shipment, it is necessary to manage residue levels during the pre-harvest stages. Therefore, the Republic of Korea establishes pre-harvest residue limits (PHRLs) per crop and pesticide. This study was conducted to set PHRLs for penthiopyrad and tebufenpyrad in angelica leaves, where the exceedance rates of MRLs are expected to be high. The LOQ of the analytical method used was 0.01 mg/kg and it demonstrated good linearity, with a correlation coefficient of 0.999 or higher within the quantitation range of 0.005 to 0.5 mg/kg. The recovery and storage stability accuracy values were in the range of 94.5-111.1%, within the acceptable range (70-120%, RSD ≤ 20%). The matrix effect for both pesticides was in the medium-to-strong range, and it did not significantly impact the quantitative results as a matrix-matched calibration method was employed. Using the validated method, residue concentrations of penthiopyrad 20 (%) EC and tebufenpyrad 10 (%) EC were analyzed. Both pesticides exhibited a decreasing residue trend over time. In Fields 1-3 and their integrated results, the biological half-life was within 2.6-4.0 days for penthiopyrad and 3.0-4.2 days for tebufenpyrad. The minimum value of the regression coefficient in the dissipation curve regression equation was selected as the dissipation constant. The selected dissipation constants for penthiopyrad in Fields 1-3 and their integration were 0.1221, 0.2081, 0.2162, and 0.1960. For tebufenpyrad, the dissipation constants were 0.1451, 0.0960, 0.1725, and 0.1600, respectively. The dissipation constant was used to calculate PHRL per field. Following the principles of the PHRL proposal process, residue levels (%) on PHI dates relative to MRLs were calculated, and fields for proposing PHRLs were selected. For penthiopyrad, since the residue level (%) was less than 20%, the PHRL for Field 3 with the largest dissipation constant was proposed. For tebufenpyrad, as the residue level (%) exceeded 80%, the PHRL proposal could not established. It is deemed necessary to reassess the MRL and 'guidelines for safe use' for tebufenpyrad in angelica leaves.

14.
Microorganisms ; 12(6)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38930569

ABSTRACT

This study investigated the synergistic effect of combining flavourzyme, a natural enzyme, and floating electrode-dielectric barrier discharge (FE-DBD) plasma (1.1 kV, 43 kHz, N2 1.5 m/s) treatment, a non-thermal decontamination technology, against Escherichia coli biofilms in squid. E. coli (ATCC 35150 and ATCC 14301) biofilms were formed on the surface of squid and treated with different minimum inhibitory concentrations (MICs) of flavourzyme (1/8; 31.25 µL/mL, 1/4; 62.5 µL/mL, 2/4; 125 µL/mL, and 3/4 MIC; 250 µL/mL) and FE-DBD plasma (5, 10, 30, and 60 min). Independently, flavourzyme and FE-DBD plasma treatment decreased by 0.26-1.71 and 0.19-1.03 log CFU/cm2, respectively. The most effective synergistic combination against E. coli biofilms was observed at 3/4 MIC flavourzyme + 60 min FE-DBD plasma exposure, resulting in a reduction of 1.55 log CFU/cm2. Furthermore, the combined treatment exhibited higher efficacy in E. coli biofilm inactivation in squid compared to individual treatments. The pH values of the synergistic combinations were not significantly different from those of the untreated samples. The outcomes indicate that the combined treatment with flavourzyme and FE-DBD plasma can effectively provide effective control of E. coli biofilms without causing pH changes in squid. Therefore, our study suggests a new microbial control method for microbial safety in the seafood industry.

15.
Plant Cell ; 36(9): 3654-3673, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-38869214

ABSTRACT

Anthocyanins play critical roles in protecting plant tissues against diverse stresses. The complicated regulatory networks induced by various environmental factors modulate the homeostatic level of anthocyanins. Here, we show that anthocyanin accumulation is induced by brassinosteroids (BRs) in Arabidopsis (Arabidopsis thaliana) shoots and shed light on the underlying regulatory mechanism. We observed that anthocyanin levels are altered considerably in BR-related mutants, and BRs induce anthocyanin accumulation by upregulating the expression of anthocyanin biosynthetic genes. Our genetic analysis indicated that BRASSINAZOLE RESISTANT 1 (BZR1) and PRODUCTION OF ANTHOCYANIN PIGMENT 1 (PAP1) are essential for BR-induced anthocyanin accumulation. The BR-responsive transcription factor BZR1 directly binds to the PAP1 promoter, regulating its expression. In addition, we found that intense anthocyanin accumulation caused by the pap1-D-dominant mutation is significantly reduced in BR mutants, implying that BR activity is required for PAP1 function after PAP1 transcription. Moreover, we demonstrated that BZR1 physically interacts with PAP1 to cooperatively regulate the expression of PAP1-target genes, such as TRANSPARENT TESTA 8, DIHYDROFLAVONOL 4-REDUCTASE, and LEUKOANTHOCYANIDIN DIOXYGENASE. Our findings indicate that BZR1 functions as an integral component of the PAP1-containing transcription factor complex, contributing to increased anthocyanin biosynthesis. Notably, we also show that functional interaction of BZR1 with PAP1 is required for anthocyanin accumulation induced by low nitrogen stress. Taken together, our results demonstrate that BR-regulated BZR1 promotes anthocyanin biosynthesis through cooperative interaction with PAP1 of the MBW complex.


Subject(s)
Anthocyanins , Arabidopsis Proteins , Arabidopsis , Brassinosteroids , DNA-Binding Proteins , Gene Expression Regulation, Plant , Pancreatitis-Associated Proteins , Plant Shoots , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Anthocyanins/biosynthesis , Anthocyanins/metabolism , Plant Shoots/metabolism , Plant Shoots/genetics , Pancreatitis-Associated Proteins/metabolism , Pancreatitis-Associated Proteins/genetics , Brassinosteroids/metabolism , Brassinosteroids/biosynthesis , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Promoter Regions, Genetic , Mutation , Transcription Factors/metabolism , Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Plants, Genetically Modified
16.
J Pharm Pharm Sci ; 27: 12398, 2024.
Article in English | MEDLINE | ID: mdl-38577255

ABSTRACT

Bioequivalence (BE) studies are considered the standard for demonstrating that the performance of a generic drug product in the human body is sufficiently similar to that of its comparator product. The objective of this article is to describe the recommendations from participating Bioequivalence Working Group for Generics (BEWGG) members of the International Pharmaceutical Regulators Programme (IPRP) regarding the conduct and acceptance criteria for BE studies of immediate release solid oral dosage forms. A survey was conducted among BEWGG members regarding their BE recommendations and requirements related to study subjects, study design, sample size, single or multiple dose administration, study conditions (fasting or fed), analyte to be measured, selection of product strength, drug content, handling of endogenous substances, BE acceptance criteria, and additional design aspects. All members prefer conducting single dose cross-over designed studies in healthy subjects with a minimum of 12 subjects and utilizing the parent drug data to assess BE. However, differences emerged among the members when the drug's pharmacokinetics and pharmacodynamics become more complex, such that the study design (e.g., fasting versus fed conditions) and BE acceptance criteria (e.g., highly variable drugs, narrow therapeutic index drugs) may be affected. The survey results and discussions were shared with the ICH M13 Expert Working Group (EWG) and played an important role in identifying and analyzing gaps during the harmonization process. The draft ICH M13A guideline developed by the M13 EWG was endorsed by ICH on 20 December 2022, under Step 2.


Subject(s)
Drugs, Generic , Research Design , Humans , Therapeutic Equivalency
17.
Food Chem Toxicol ; 188: 114698, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679282

ABSTRACT

Phototoxicity is an acute toxic reaction induced by topical skin exposure to photoreactive chemicals followed by exposure to environmental light and thus chemicals that absorb UV are recommended to be evaluated for phototoxic potential. There are currently three internationally harmonized alternative test methods for phototoxicity. One of them is the in vitro Phototoxicity: RhE Phototoxicity test method (OECD TG498). Korean center for the Validation of Alternative Methods (KoCVAM) developed an in vitro phototoxicity test method using a KeraSkin™ reconstructed human epidermis model (KeraSkin™ Phototoxicity Assay) as a 'me-too' test method of OECD TG498. For the development and optimization of KeraSkin™ Phototoxicity Assay, the following test chemicals were used: 6 proficiency chemicals in OECD TG498 (3 phototoxic and 3 non-phototoxic), 6 reference chemicals in OECD Performance Standard No. 356 (excluding the proficiency test chemicals, 3 phototoxic and 3 non-phototoxic) and 13 additional chemicals (7 phototoxic and 6 non-phototoxic). Based on the test results generated from the test chemicals above, the overall predictive capacity of KeraSkin™ Phototoxicity Assay was calculated. In particular, the assay exhibited 100 % accuracy, 100 % sensitivity, and 100 % specificity. Therefore, it fulfills the requirements to be included as a 'me-too' test method in OECD TG498.


Subject(s)
Dermatitis, Phototoxic , Epidermis , Humans , Epidermis/drug effects , Epidermis/radiation effects , Animal Testing Alternatives/methods , Ultraviolet Rays , Toxicity Tests/methods , Models, Biological
18.
Sci Adv ; 10(9): eadk6425, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38416834

ABSTRACT

To develop a universal coronavirus (CoV) vaccine, long-term immunity against multiple CoVs, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, Middle East respiratory syndrome (MERS)-CoV, and future CoV strains, is crucial. Following the 2015 Korean MERS outbreak, we conducted a long-term follow-up study and found that although neutralizing antibodies and memory T cells against MERS-CoV declined over 5 years, some recovered patients exhibited increased antibody levels during the COVID-19 pandemic. This likely resulted from cross-reactive immunity induced by SARS-CoV-2 vaccines or infections. A significant correlation in antibody responses across various CoVs indicates shared immunogenic epitopes. Two epitopes-the spike protein's stem helix and intracellular domain-were highly immunogenic after MERS-CoV infection and after SARS-CoV-2 vaccination or infection. In addition, memory T cell responses, especially polyfunctional CD4+ T cells, were enhanced during the pandemic, correlating significantly with MERS-CoV spike-specific antibodies and neutralizing activity. Therefore, incorporating these cross-reactive and immunogenic epitopes into pan-CoV vaccine formulations may facilitate effective vaccine development.


Subject(s)
COVID-19 , Middle East Respiratory Syndrome Coronavirus , Humans , COVID-19/epidemiology , COVID-19 Vaccines , Pandemics , Follow-Up Studies , SARS-CoV-2 , Adaptive Immunity , Epitopes
19.
Viruses ; 16(1)2024 01 12.
Article in English | MEDLINE | ID: mdl-38257810

ABSTRACT

The current study investigated the effects of heat treatment (85 °C or 100 °C for 5-20 min) on human norovirus (HuNoV) GII.4's capsid stability in fresh oysters. In addition, propidium monoazide (PMA) was used in viral samples to distinguish infectious viruses and evaluated using real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR). Further, we explored the effect of the heat treatment on oyster quality (Hunter color and hardness). The titer of HuNoV for oysters significantly (p < 0.05) decreased to 0.39-1.32 and 0.93-2.27 log10 copy number/µL in the non-PMA and PMA-treated groups, respectively, after heat treatment. HuNoV in oysters not treated with PMA showed a decrease of <1.5 - log10, whereas in PMA-treated oysters, a decrease of >1 - log10 was observed after treatment at 85 °C for 10 min. Treatments for both 15 min and 20 min at 100 °C showed a >99% log10 reduction using PMA/RT-qPCR. In the Hunter color, an increase in heat temperature and duration was associated with a significant decrease in 'L' (brightness+, darkness-) and an increase in 'a' (redness+, greenness-) and 'b' (yellowness+, blueness-) (p < 0.05). Our findings confirmed that the hardness of oyster meat significantly increased with increasing temperature and time (p < 0.05). This study demonstrated that PMA/RT-qPCR was effective in distinguishing HuNoV viability in heat-treated oysters. The optimal heat treatment for oysters was 10 min at 85 °C and 5 min at 100 °C.


Subject(s)
Azides , Crassostrea , Norovirus , Humans , Animals , Propidium , Capsid
20.
Food Sci Anim Resour ; 44(1): 39-50, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38229861

ABSTRACT

The projected growth of global meat production over the next decade is attributed to rising income levels and population expansion. One potentially more pragmatic approach to mitigating the adverse externalities associated with meat production involves implementing alterations to the production process, such as transitioning to cultured meat, hybrid cultured meat, and meat alternatives. Cultured meat (CM) is derived from animal stem cells and undergoes a growth and division process that closely resembles the natural in vivo cellular development. CM is emerging as a widely embraced substitute for traditional protein sources, with the potential to alleviate the future strain on animal-derived meat production. To date, the primary emphasis of cultured meat research and production has predominantly been around the ecological advantages and ethical considerations pertaining to animal welfare. However, there exists substantial study potential in exploring consumer preferences with respect to the texture, color, cuts, and sustainable methodologies associated with cultured meat. The potential augmentation of cultured meat's acceptance could be facilitated through the advancement of a wider range of cuts to mimic real muscle fibers. This review examines the prospective commercial trends of hybrid cultured meat. Subsequently, the present state of research pertaining to the advancement of scaffolding, coloration, and muscle fiber development in hybrid cultured meat, encompassing plant-based alternatives designed to emulate authentic meat, has been deliberated. However, this discussion highlights the obstacles that have arisen in current procedures and proposes future research directions for the development of sustainable cultured meat and meat alternatives, such as plant-based meat production.

SELECTION OF CITATIONS
SEARCH DETAIL