Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
1.
Nat Cancer ; 5(1): 85-99, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37814010

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) cells use glutamine (Gln) to support proliferation and redox balance. Early attempts to inhibit Gln metabolism using glutaminase inhibitors resulted in rapid metabolic reprogramming and therapeutic resistance. Here, we demonstrated that treating PDAC cells with a Gln antagonist, 6-diazo-5-oxo-L-norleucine (DON), led to a metabolic crisis in vitro. In addition, we observed a profound decrease in tumor growth in several in vivo models using sirpiglenastat (DRP-104), a pro-drug version of DON that was designed to circumvent DON-associated toxicity. We found that extracellular signal-regulated kinase (ERK) signaling is increased as a compensatory mechanism. Combinatorial treatment with DRP-104 and trametinib led to a significant increase in survival in a syngeneic model of PDAC. These proof-of-concept studies suggested that broadly targeting Gln metabolism could provide a therapeutic avenue for PDAC. The combination with an ERK signaling pathway inhibitor could further improve the therapeutic outcome.


Subject(s)
Antineoplastic Agents , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Glutamine/metabolism , Cell Line, Tumor , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Antineoplastic Agents/pharmacology , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/metabolism , Enzyme Inhibitors/pharmacology
2.
Article in English | MEDLINE | ID: mdl-37696660

ABSTRACT

The altered metabolism of tumor cells is a well-known hallmark of cancer and is driven by multiple factors such as mutations in oncogenes and tumor suppressor genes, the origin of the tissue where the tumor arises, and the microenvironment of the tumor. These metabolic changes support the growth of cancer cells by providing energy and the necessary building blocks to sustain proliferation. Targeting these metabolic alterations therapeutically is a potential strategy to treat cancer, but it is challenging due to the metabolic plasticity of tumors. Cancer cells have developed ways to scavenge nutrients through autophagy and macropinocytosis and can also form metabolic networks with stromal cells in the tumor microenvironment. Understanding the role of the tumor microenvironment in tumor metabolism is crucial for effective therapeutic targeting. This review will discuss tumor metabolism and the contribution of the stroma in supporting tumor growth through metabolic interactions.

3.
Autophagy ; : 1-2, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37312426

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) has one of the lowest 5-year survival rates of any cancer in the United States. Our previous work has shown that autophagy can promote PDAC progression. We recently established the importance of autophagy in regulating bioavailable iron to control mitochondrial metabolism in PDAC. We found that inhibition of autophagy in PDAC leads to mitochondrial dysfunction due to abrogation of succinate dehydrogenase complex iron sulfur subunit B (SDHB) expression. Additionally, we observed that cancer-associated fibroblasts (CAFs) can provide iron to autophagy-inhibited PDAC tumor cells, thereby increasing their resistance to autophagy inhibition. To impede such metabolic compensation, we used a low iron diet together with autophagy inhibition and demonstrated a significant improvement of tumor response in syngeneic PDAC models.Abbreviations: PDAC: Pancreatic ductal adenocarcinoma; CAFs: cancer-associated fibroblasts; SDHB: succinate dehydrogenase complex iron sulfur subunit B; ISCA1: iron sulfur cluster assembly protein 1; FPN: ferroportin; LIP: labile iron pool; FAC: ferric ammonium chloride; OCR: oxygen consumption rate; OXPHOS: oxidative phosphorylation, IL6: interleukin 6; Fe-S: iron sulfur; ATP: adenosine triphosphate.

4.
Nat Cancer ; 4(5): 596-607, 2023 05.
Article in English | MEDLINE | ID: mdl-37069394

ABSTRACT

Macroautophagy is a cellular quality-control process that degrades proteins, protein aggregates and damaged organelles. Autophagy plays a fundamental role in cancer where, in the presence of stressors (for example, nutrient starvation, hypoxia, mechanical pressure), tumor cells activate it to degrade intracellular substrates and provide energy. Cell-autonomous autophagy in tumor cells and cell-nonautonomous autophagy in the tumor microenvironment and in the host converge on mechanisms that modulate metabolic fitness, DNA integrity and immune escape and, consequently, support tumor growth. In this Review, we will discuss insights into the tumor-modulating roles of autophagy in different contexts and reflect on how future studies using physiological culture systems may help to understand the complexity and open new therapeutic avenues.


Subject(s)
Neoplasms , Humans , Neoplasms/drug therapy , Neoplastic Processes , Autophagy/genetics , Macroautophagy , Tumor Microenvironment
5.
Sci Adv ; 9(16): eadf9284, 2023 04 21.
Article in English | MEDLINE | ID: mdl-37075122

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) cells maintain a high level of autophagy, allowing them to thrive in an austere microenvironment. However, the processes through which autophagy promotes PDAC growth and survival are still not fully understood. Here, we show that autophagy inhibition in PDAC alters mitochondrial function by losing succinate dehydrogenase complex iron sulfur subunit B expression by limiting the availability of the labile iron pool. PDAC uses autophagy to maintain iron homeostasis, while other tumor types assessed require macropinocytosis, with autophagy being dispensable. We observed that cancer-associated fibroblasts can provide bioavailable iron to PDAC cells, promoting resistance to autophagy ablation. To overcome this cross-talk, we used a low-iron diet and demonstrated that this augmented the response to autophagy inhibition therapy in PDAC-bearing mice. Our work highlights a critical link between autophagy, iron metabolism, and mitochondrial function that may have implications for PDAC progression.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Mice , Cell Line, Tumor , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/metabolism , Autophagy , Homeostasis , Mitochondria/metabolism , Tumor Microenvironment , Pancreatic Neoplasms
6.
Trends Cancer ; 9(6): 461-471, 2023 06.
Article in English | MEDLINE | ID: mdl-36935322

ABSTRACT

Cancer is a systemic disease that involves malignant cell-intrinsic and -extrinsic metabolic adaptations. Most studies have tended to focus on elucidating the metabolic vulnerabilities in the primary tumor microenvironment, leaving the metastatic microenvironment less explored. In this opinion article, we discuss the current understanding of the metabolic crosstalk between the cancer cells and the tumor microenvironment, both at local and systemic levels. We explore the possible influence of the primary tumor secretome to metabolically and epigenetically rewire the nonmalignant distant organs during prometastatic niche formation and successful metastatic colonization by the cancer cells. In an attempt to understand the process of prometastatic niche formation, we have speculated how cancer may hijack the inherent regenerative propensity of tissue parenchyma during metastatic colonization.


Subject(s)
Neoplasms , Humans , Neoplasms/genetics , Neoplasms/pathology , Tumor Microenvironment/genetics
7.
Nature ; 615(7950): 168-174, 2023 03.
Article in English | MEDLINE | ID: mdl-36813961

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is expected to be the second most deadly cancer by 2040, owing to the high incidence of metastatic disease and limited responses to treatment1,2. Less than half of all patients respond to the primary treatment for PDAC, chemotherapy3,4, and genetic alterations alone cannot explain this5. Diet is an environmental factor that can influence the response to therapies, but its role in PDAC is unclear. Here, using shotgun metagenomic sequencing and metabolomic screening, we show that the microbiota-derived tryptophan metabolite indole-3-acetic acid (3-IAA) is enriched in patients who respond to treatment. Faecal microbiota transplantation, short-term dietary manipulation of tryptophan and oral 3-IAA administration increase the efficacy of chemotherapy in humanized gnotobiotic mouse models of PDAC. Using a combination of loss- and gain-of-function experiments, we show that the efficacy of 3-IAA and chemotherapy is licensed by neutrophil-derived myeloperoxidase. Myeloperoxidase oxidizes 3-IAA, which in combination with chemotherapy induces a downregulation of the reactive oxygen species (ROS)-degrading enzymes glutathione peroxidase 3 and glutathione peroxidase 7. All of this results in the accumulation of ROS and the downregulation of autophagy in cancer cells, which compromises their metabolic fitness and, ultimately, their proliferation. In humans, we observed a significant correlation between the levels of 3-IAA and the efficacy of therapy in two independent PDAC cohorts. In summary, we identify a microbiota-derived metabolite that has clinical implications in the treatment of PDAC, and provide a motivation for considering nutritional interventions during the treatment of patients with cancer.


Subject(s)
Carcinoma, Pancreatic Ductal , Microbiota , Pancreatic Neoplasms , Animals , Humans , Mice , Carcinoma, Pancreatic Ductal/diet therapy , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/microbiology , Glutathione Peroxidase/metabolism , Pancreatic Neoplasms/diet therapy , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/microbiology , Peroxidase/metabolism , Reactive Oxygen Species/metabolism , Tryptophan/metabolism , Tryptophan/pharmacology , Tryptophan/therapeutic use , Neutrophils/enzymology , Autophagy , Metagenome , Metabolomics , Fecal Microbiota Transplantation , Indoleacetic Acids/pharmacology , Indoleacetic Acids/therapeutic use , Disease Models, Animal , Germ-Free Life , Pancreatic Neoplasms
8.
JCO Oncol Pract ; 18(10): e1587-e1593, 2022 10.
Article in English | MEDLINE | ID: mdl-35830625

ABSTRACT

PURPOSE: We sought to determine the feasibility of delivering a Supportive Oncology Care at Home intervention among patients with pancreatic cancer. METHODS: We prospectively enrolled patients with pancreatic cancer from a parent trial of neoadjuvant fluorouracil, leucovorin, oxaliplatin, and irinotecan (FOLFIRINOX). The intervention entailed (1) remote monitoring of patient-reported symptoms, vital signs, and body weight; (2) a hospital-at-home care model; and (3) structured communication with the oncology team. We defined the intervention as feasible if ≥ 60% of patients enrolled in the study and ≥ 60% completed the daily assessments within the first 2-weeks of enrollment. We determined rates of treatment delays, urgent clinic visits, emergency department visits, and hospitalizations among those who did (n = 20) and did not (n = 24) receive Supportive Oncology Care at Home from the parent trial. RESULTS: From January 2019 to September 2020, we enrolled 80.8% (21/26) of potentially eligible patients. One patient became ineligible following consent because of moving out of state, resulting in 20 participants (median age = 67 years). In the first 2 weeks of enrollment, 65.0% of participants completed all daily assessments. Overall, patients reported 96.1% of daily symptoms, 96.1% of daily vital signs, and 92.5% of weekly body weights. Patients receiving the intervention had lower rates of treatment delays (55.0% v 75.0%), urgent clinic visits (10.0% v 25.0%), and emergency department visits/hospitalizations (45.0% v 62.5%) compared with those not receiving the intervention from the same parent trial. CONCLUSION: Findings demonstrate the feasibility and acceptability of a Supportive Oncology Care at Home intervention. Future work will investigate the efficacy of this intervention for decreasing health care use and improving patient outcomes.


Subject(s)
Pancreatic Neoplasms , Aged , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Fluorouracil/adverse effects , Humans , Irinotecan/adverse effects , Leucovorin/adverse effects , Oxaliplatin/adverse effects , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/therapy , Pancreatic Neoplasms
9.
Clin Cancer Res ; 28(15): 3296-3307, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35363262

ABSTRACT

PURPOSE: Patient-derived organoids (PDO) are a promising technology to support precision medicine initiatives for patients with pancreatic ductal adenocarcinoma (PDAC). PDOs may improve clinical next-generation sequencing (NGS) and enable rapid ex vivo chemotherapeutic screening (pharmacotyping). EXPERIMENTAL DESIGN: PDOs were derived from tissues obtained during surgical resection and endoscopic biopsies and studied with NGS and pharmacotyping. PDO-specific pharmacotype is assessed prospectively as a predictive biomarker of clinical therapeutic response by leveraging data from a randomized controlled clinical trial. RESULTS: Clinical sequencing pipelines often fail to detect PDAC-associated somatic mutations in surgical specimens that demonstrate a good pathologic response to previously administered chemotherapy. Sequencing the PDOs derived from these surgical specimens, after biomass expansion, improves the detection of somatic mutations and enables quantification of copy number variants. The detection of clinically relevant mutations and structural variants is improved following PDO biomass expansion. On clinical trial, PDOs were derived from biopsies of treatment-naïve patients prior to treatment with FOLFIRINOX (FFX). Ex vivo PDO pharmacotyping with FFX components predicted clinical therapeutic response in these patients with borderline resectable or locally advanced PDAC treated in a neoadjuvant or induction paradigm. PDO pharmacotypes suggesting sensitivity to FFX components were associated with longitudinal declines of tumor marker, carbohydrate-antigen 19-9 (CA-19-9), and favorable RECIST imaging response. CONCLUSIONS: PDOs established from tissues obtained from patients previously receiving cytotoxic chemotherapies can be accomplished in a clinically certified laboratory. Sequencing PDOs following biomass expansion improves clinical sequencing quality. High in vitro sensitivity to standard-of-care chemotherapeutics predicts good clinical response to systemic chemotherapy in PDAC. See related commentary by Zhang et al., p. 3176.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor/genetics , Biomarkers, Tumor/therapeutic use , Carcinoma, Pancreatic Ductal/diagnosis , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Humans , Organoids/pathology , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Precision Medicine , Pancreatic Neoplasms
10.
Proc Natl Acad Sci U S A ; 119(16): e2119168119, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35412885

ABSTRACT

A hallmark of pancreatic tumors is their highly desmoplastic stroma composed of fibroblasts, immune cells, and a dense network of collagen fibers. Tumor-associated macrophages are one of the most abundant immune cell populations in the pancreatic tumor stroma. Their protumorigenic function has been attributed predominantly to their capacity to promote immune evasion and metastasis. Tumor-assoc iated macrophages are also well known for their role in the remodeling of the stroma via collagen production and degradation, with the latter being mediated by mannose receptor (MRC1)-dependent endocytosis of collagen. Here we show that MRC1-mediated collagen internalization and subsequent lysosomal degradation by macrophages harboring a tumor-associated phenotype are accompanied by the accumulation of collagen-derived intracellular free amino acids and increased arginine biosynthesis. The resulting increase in intracellular arginine levels leads to the up-regulation of inducible nitric oxide synthase and the production of reactive nitrogen species. Furthermore, reactive nitrogen species derived from internalized and degraded collagen promotes a profibrotic phenotype in pancreatic stellate cells resulting in enhanced intratumoral collagen deposition. Overall, our findings identify a role for extracellular matrix remodeling in the functional modulation of tumor-associated macrophages via metabolic rewiring.


Subject(s)
Carcinoma, Pancreatic Ductal , Collagen , Pancreatic Neoplasms , Tumor-Associated Macrophages , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , Collagen/metabolism , Fibrosis , Humans , Immune Tolerance , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Tumor Microenvironment , Tumor-Associated Macrophages/metabolism , Pancreatic Neoplasms
11.
Genes Dev ; 35(19-20): 1327-1332, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34531315

ABSTRACT

Activating mutations in KRAS (KRAS*) are present in nearly all pancreatic ductal adenocarcinoma (PDAC) cases and critical for tumor maintenance. By using an inducible KRAS* PDAC mouse model, we identified a deubiquitinase USP21-driven resistance mechanism to anti-KRAS* therapy. USP21 promotes KRAS*-independent tumor growth via its regulation of MARK3-induced macropinocytosis, which serves to maintain intracellular amino acid levels for anabolic growth. The USP21-mediated KRAS* bypass, coupled with the frequent amplification of USP21 in human PDAC tumors, encourages the assessment of USP21 as a novel drug target as well as a potential parameter that may affect responsiveness to emergent anti-KRAS* therapy.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Deubiquitinating Enzymes/metabolism , Mice , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Ubiquitin Thiolesterase
12.
Nature ; 597(7876): 420-425, 2021 09.
Article in English | MEDLINE | ID: mdl-34471290

ABSTRACT

Oxygen is critical for a multitude of metabolic processes that are essential for human life. Biological processes can be identified by treating cells with 18O2 or other isotopically labelled gases and systematically identifying biomolecules incorporating labeled atoms. Here we labelled cell lines of distinct tissue origins with 18O2 to identify the polar oxy-metabolome, defined as polar metabolites labelled with 18O under different physiological O2 tensions. The most highly 18O-labelled feature was 4-hydroxymandelate (4-HMA). We demonstrate that 4-HMA is produced by hydroxyphenylpyruvate dioxygenase-like (HPDL), a protein of previously unknown function in human cells. We identify 4-HMA as an intermediate involved in the biosynthesis of the coenzyme Q10 (CoQ10) headgroup in human cells. The connection of HPDL to CoQ10 biosynthesis provides crucial insights into the mechanisms underlying recently described neurological diseases related to HPDL deficiencies1-4 and cancers with HPDL overexpression5.


Subject(s)
4-Hydroxyphenylpyruvate Dioxygenase/metabolism , Mandelic Acids/metabolism , Metabolome , Ubiquinone/analogs & derivatives , Animals , Cell Line , Female , Humans , Mandelic Acids/analysis , Mice , Mice, Nude , Tyrosine/metabolism , Ubiquinone/biosynthesis
13.
Nat Commun ; 12(1): 4905, 2021 08 12.
Article in English | MEDLINE | ID: mdl-34385458

ABSTRACT

α-ketoglutarate (KG), also referred to as 2-oxoglutarate, is a key intermediate of cellular metabolism with pleiotropic functions. Cell-permeable esterified analogs are widely used to study how KG fuels bioenergetic and amino acid metabolism and DNA, RNA, and protein hydroxylation reactions, as cellular membranes are thought to be impermeable to KG. Here we show that esterified KG analogs rapidly hydrolyze in aqueous media, yielding KG that, in contrast to prevailing assumptions, imports into many cell lines. Esterified KG analogs exhibit spurious KG-independent effects on cellular metabolism, including extracellular acidification, arising from rapid hydrolysis and de-protonation of α-ketoesters, and significant analog-specific inhibitory effects on glycolysis or mitochondrial respiration. We observe that imported KG decarboxylates to succinate in the cytosol and contributes minimally to mitochondrial metabolism in many cell lines cultured in normal conditions. These findings demonstrate that nuclear and cytosolic KG-dependent reactions may derive KG from functionally distinct subcellular pools and sources.


Subject(s)
Amino Acids/metabolism , Energy Metabolism , Esters/metabolism , Ketoglutaric Acids/metabolism , Mitochondria/metabolism , Succinic Acid/metabolism , Animals , Cell Line, Tumor , Cytosol/metabolism , Esters/chemistry , Glycolysis , HEK293 Cells , Humans , Hydrolysis , Hydrophobic and Hydrophilic Interactions , Ketoglutaric Acids/chemistry , Mice , Oxygen Consumption , RAW 264.7 Cells
14.
Autophagy ; 17(6): 1561-1562, 2021 06.
Article in English | MEDLINE | ID: mdl-33985415

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest forms of cancer. The elevated macroautophagy/autophagy in these tumors supports growth, promotes immune evasion, and increases therapeutic resistance. Therefore, targeting autophagy is a therapeutic strategy that is being pursued to treat PDAC patients. Whereas autophagy inhibition impairs mitochondrial metabolism in PDAC, the specific metabolite(s) that becomes limiting when autophagy is inhibited has not been identified. We report that loss of autophagy specifically results in intracellular cysteine depletion under nutrient-replete conditions. Mechanistically, we show that PDAC cells utilize the autophagy machinery to regulate the activity and localization of the cystine transporter SLC7A11 at the plasma membrane. Upon inhibition of autophagy, SLC7A11 is localized to lysosomes in an MTORC2-dependent manner. Our findings reveal a novel connection between autophagy and cysteine metabolism in pancreatic cancer.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Amino Acid Transport System y+ , Autophagy , Cell Line, Tumor , Cysteine , Humans
15.
Nat Rev Gastroenterol Hepatol ; 18(7): 482-492, 2021 07.
Article in English | MEDLINE | ID: mdl-33742165

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease with a 5-year survival rate of <10%. The tumour microenvironment (TME) of PDAC is characterized by excessive fibrosis and deposition of extracellular matrix, termed desmoplasia. This unique TME leads to high interstitial pressure, vascular collapse and low nutrient and oxygen diffusion. Together, these factors contribute to the unique biology and therapeutic resistance of this deadly tumour. To thrive in this hostile environment, PDAC cells adapt by using non-canonical metabolic pathways and rely on metabolic scavenging pathways such as autophagy and macropinocytosis. Here, we review the metabolic pathways that PDAC use to support their growth in the setting of an austere TME. Understanding how PDAC tumours rewire their metabolism and use scavenging pathways under environmental stressors might enable the identification of novel therapeutic approaches.


Subject(s)
Pancreatic Neoplasms/metabolism , Tumor Microenvironment/physiology , Carcinoma, Pancreatic Ductal/metabolism , Humans , Metabolic Networks and Pathways
16.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Article in English | MEDLINE | ID: mdl-33531365

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest forms of cancer and is highly refractory to current therapies. We had previously shown that PDAC can utilize its high levels of basal autophagy to support its metabolism and maintain tumor growth. Consistent with the importance of autophagy in PDAC, autophagy inhibition significantly enhances response of PDAC patients to chemotherapy in two randomized clinical trials. However, the specific metabolite(s) that autophagy provides to support PDAC growth is not yet known. In this study, we demonstrate that under nutrient-replete conditions, loss of autophagy in PDAC leads to a relatively restricted impairment of amino acid pools, with cysteine levels showing a significant drop. Additionally, we made the striking discovery that autophagy is critical for the proper membrane localization of the cystine transporter SLC7A11. Mechanistically, autophagy impairment results in the loss of SLC7A11 on the plasma membrane and increases its localization at the lysosome in an mTORC2-dependent manner. Our results demonstrate a critical link between autophagy and cysteine metabolism and provide mechanistic insights into how targeting autophagy can cause metabolic dysregulation in PDAC.


Subject(s)
Adenocarcinoma/genetics , Amino Acid Transport System y+/genetics , Carcinoma, Pancreatic Ductal/genetics , Cell Proliferation/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Animals , Autophagy/genetics , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/genetics , Heterografts , Homeostasis/genetics , Humans , Mice , Reactive Oxygen Species/metabolism
17.
Sci Adv ; 7(3)2021 01.
Article in English | MEDLINE | ID: mdl-33523897

ABSTRACT

Triple-negative breast cancer (TNBC) is a subtype of breast cancer without a targeted form of therapy. Unfortunately, up to 70% of patients with TNBC develop resistance to treatment. A known contributor to chemoresistance is dysfunctional mitochondrial apoptosis signaling. We set up a phenotypic small-molecule screen to reveal vulnerabilities in TNBC cells that were independent of mitochondrial apoptosis. Using a functional genetic approach, we identified that a "hit" compound, BAS-2, had a potentially similar mechanism of action to histone deacetylase inhibitors (HDAC). An in vitro HDAC inhibitor assay confirmed that the compound selectively inhibited HDAC6. Using state-of-the-art acetylome mass spectrometry, we identified glycolytic substrates of HDAC6 in TNBC cells. We confirmed that inhibition or knockout of HDAC6 reduced glycolytic metabolism both in vitro and in vivo. Through a series of unbiased screening approaches, we have identified a previously unidentified role for HDAC6 in regulating glycolytic metabolism.


Subject(s)
Triple Negative Breast Neoplasms , Apoptosis , Cell Line, Tumor , Cell Proliferation , Early Detection of Cancer , Histone Deacetylase 6/genetics , Histone Deacetylase 6/metabolism , Histone Deacetylase Inhibitors/pharmacology , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism
18.
Cancer Discov ; 11(5): 1067-1081, 2021 05.
Article in English | MEDLINE | ID: mdl-33504580

ABSTRACT

Metabolic reprogramming enables cancer cell growth, proliferation, and survival. This reprogramming is driven by the combined actions of oncogenic alterations in cancer cells and host cell factors acting on cancer cells in the tumor microenvironment. Cancer cell-intrinsic mechanisms activate signal transduction components that either directly enhance metabolic enzyme activity or upregulate transcription factors that in turn increase expression of metabolic regulators. Extrinsic signaling mechanisms involve host-derived factors that further promote and amplify metabolic reprogramming in cancer cells. This review describes intrinsic and extrinsic mechanisms driving cancer metabolism in the tumor microenvironment and how such mechanisms may be targeted therapeutically. SIGNIFICANCE: Cancer cell metabolic reprogramming is a consequence of the converging signals originating from both intrinsic and extrinsic factors. Intrinsic signaling maintains the baseline metabolic state, whereas extrinsic signals fine-tune the metabolic processes based on the availability of metabolites and the requirements of the cells. Therefore, successful targeting of metabolic pathways will require a nuanced approach based on the cancer's genotype, tumor microenvironment composition, and tissue location.


Subject(s)
Cell Transformation, Neoplastic , Neoplasms/metabolism , Tumor Microenvironment , Humans , Metabolic Networks and Pathways , Neoplasms/pathology
19.
Cell Metab ; 33(1): 199-210.e8, 2021 01 05.
Article in English | MEDLINE | ID: mdl-33152323

ABSTRACT

Pancreatic ductal adenocarcinoma (PDA) is a deadly cancer characterized by complex metabolic adaptations that promote survival in a severely hypoxic and nutrient-limited tumor microenvironment (TME). Modeling microenvironmental influences in cell culture has been challenging, and technical limitations have hampered the comprehensive study of tumor-specific metabolism in vivo. To systematically interrogate metabolic vulnerabilities in PDA, we employed parallel CRISPR-Cas9 screens using in vivo and in vitro systems. This work revealed striking overlap of in vivo metabolic dependencies with those in vitro. Moreover, we identified that intercellular nutrient sharing can mask dependencies in pooled screens, highlighting a limitation of this approach to study tumor metabolism. Furthermore, metabolic dependencies were similar between 2D and 3D culture, although 3D culture may better model vulnerabilities that influence certain oncogenic signaling pathways. Lastly, our work demonstrates the power of genetic screening approaches to define in vivo metabolic dependencies and pathways that may have therapeutic utility.


Subject(s)
CRISPR-Cas Systems/genetics , Carcinoma, Pancreatic Ductal/metabolism , Pancreatic Neoplasms/metabolism , Animals , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Cell Proliferation , Humans , Mice , Mice, Inbred C57BL , Neoplasms, Experimental/genetics , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Tumor Cells, Cultured , Tumor Microenvironment/genetics
20.
Cell ; 183(5): 1202-1218.e25, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33142117

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) tumors have a nutrient-poor, desmoplastic, and highly innervated tumor microenvironment. Although neurons can release stimulatory factors to accelerate PDAC tumorigenesis, the metabolic contribution of peripheral axons has not been explored. We found that peripheral axons release serine (Ser) to support the growth of exogenous Ser (exSer)-dependent PDAC cells during Ser/Gly (glycine) deprivation. Ser deprivation resulted in ribosomal stalling on two of the six Ser codons, TCC and TCT, and allowed the selective translation and secretion of nerve growth factor (NGF) by PDAC cells to promote tumor innervation. Consistent with this, exSer-dependent PDAC tumors grew slower and displayed enhanced innervation in mice on a Ser/Gly-free diet. Blockade of compensatory neuronal innervation using LOXO-101, a Trk-NGF inhibitor, further decreased PDAC tumor growth. Our data indicate that axonal-cancer metabolic crosstalk is a critical adaptation to support PDAC growth in nutrient poor environments.


Subject(s)
Neurons/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Protein Biosynthesis , Serine/metabolism , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Aged , Animals , Axons/metabolism , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Cell Proliferation , Codon/genetics , Female , Glycine/metabolism , Humans , Male , Mice , Middle Aged , Mitochondria/metabolism , Nerve Tissue/pathology , Oxygen Consumption , Pancreatic Neoplasms/pathology , Pyrazoles , Pyrimidines , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Transfer/genetics , Rats
SELECTION OF CITATIONS
SEARCH DETAIL