Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
bioRxiv ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39211122

ABSTRACT

Engineered T and NK cell therapies have widely been used to treat hematologic malignancies and solid tumors, with promising clinical results. Current chimeric antigen receptor (CAR) T cell therapeutics have, however, been associated with treatment-related adverse events such as cytokine release syndrome (CRS) and are prone to immunologic exhaustion. CAR-NK therapeutics, while not associated with CRS, have limited in vivo persistence. We now demonstrate that an NK-like TCRαß + CD8 T cell subset, identified and expanded ex vivo through its expression of the activating receptor NKG2C (NKG2C + NK-like T cells), can be transduced to express a second-generation CD19 CAR (1928z), resulting in superior tumor clearance, longer persistence and decreased exhaustion compared to conventional 1928z CAR + CD8 T cells and 1928z CAR+ NK cells. Moreover, CAR-modified NKG2C + NK-like T cells resulted in significantly reduced CRS compared to conventional CAR + CD8 T cells. Similarly, NKG2C + NK-like T cells engineered with a TCR targeting the NY-ESO-1 antigen exhibit robust tumor control and minimal exhaustion compared to TCR-engineered conventional CD8 T cells. These data establish NKG2C + NK-like T cells as a robust platform for cell engineering, and offer a safer, more durable alternative to conventional CAR-T and CAR-NK therapies.

2.
Res Sq ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38854019

ABSTRACT

The inherent cross-reactivity of the T cell receptor (TCR) is balanced by high specificity, which often manifests in confounding ways not easily interpretable from static structures. We show here that TCR discrimination between an HLA-A*03:01 (HLA-A3)-restricted public neoantigen derived from mutant PIK3CA and its wild-type (WT) counterpart emerges from motions within the HLA binding groove that vary with the identity of the peptide's first primary anchor. The motions form a dynamic gate that in the complex with the WT peptide impedes a large conformational change required for TCR binding. The more rigid neoantigen is insusceptible to this limiting dynamic, and with the gate open, is able to transit its central tryptophan residue underneath the peptide backbone to the contralateral side of the HLA-A3 peptide binding groove, facilitating TCR binding. Our findings reveal a novel mechanism driving TCR specificity for a cancer neoantigen that is rooted in the dynamic and allosteric nature of peptide/MHC-I complexes, with implications for resolving long-standing and often confounding questions about the determinants of T cell specificity.

3.
bioRxiv ; 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38464085

ABSTRACT

Chimeric antigen receptor (CAR)-engineered T and NK cells can cause durable remission of B-cell malignancies; however, limited persistence restrains the full potential of these therapies in many patients. The FAS ligand (FAS-L)/FAS pathway governs naturally-occurring lymphocyte homeostasis, yet knowledge of which cells express FAS-L in patients and whether these sources compromise CAR persistence remains incomplete. Here, we constructed a single-cell atlas of diverse cancer types to identify cellular subsets expressing FASLG, the gene encoding FAS-L. We discovered that FASLG is limited primarily to endogenous T cells, NK cells, and CAR-T cells while tumor and stromal cells express minimal FASLG. To establish whether CAR-T/NK cell survival is regulated through FAS-L, we performed competitive fitness assays using lymphocytes modified with or without a FAS dominant negative receptor (ΔFAS). Following adoptive transfer, ΔFAS-expressing CAR-T and CAR-NK cells became enriched across multiple tissues, a phenomenon that mechanistically was reverted through FASLG knockout. By contrast, FASLG was dispensable for CAR-mediated tumor killing. In multiple models, ΔFAS co-expression by CAR-T and CAR-NK enhanced antitumor efficacy compared with CAR cells alone. Together, these findings reveal that CAR-engineered lymphocyte persistence is governed by a FAS-L/FAS auto-regulatory circuit.

4.
bioRxiv ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-37662363

ABSTRACT

The T-cell receptor (TCR) is central to the ligand-dependent activation of T lymphocytes and as such orchestrates both adaptive and pathologic immune processes 1 . However, major questions remain regarding the structure and function of the human TCR 2-4 . Here, we present cryogenic electron microscopy structures for the unliganded human TCR-CD3 complex in a native-like lipid bilayer, revealing two related conformations that are distinct from its structure in detergent. These new "closed and compacted" conformations afford insights into the interactions between the TCR-CD3 and the membrane, including conserved surface patches that make extensive outer leaflet contact, and suggest novel conformational regulation by glycans. We show that the closed/compacted conformations, not the extended one previously reported in detergent 5-8 , represent the unliganded resting state for the TCR-CD3 in vivo , underscoring the importance of structural interrogation of membrane proteins in native-like environments. We use conformation-locking disulfide mutants to show that ectodomain opening is necessary for maximal ligand-dependent TCR-CD3 activation, demonstrating that TCR-intrinsic conformational change is necessary for full TCR-CD3 activation and opening numerous avenues for immunoreceptor engineering.

5.
Nat Rev Drug Discov ; 22(12): 996-1017, 2023 12.
Article in English | MEDLINE | ID: mdl-37891435

ABSTRACT

The T cell receptor (TCR) complex is a naturally occurring antigen sensor that detects, amplifies and coordinates cellular immune responses to epitopes derived from cell surface and intracellular proteins. Thus, TCRs enable the targeting of proteins selectively expressed by cancer cells, including neoantigens, cancer germline antigens and viral oncoproteins. As such, TCRs have provided the basis for an emerging class of oncology therapeutics. Herein, we review the current cancer treatment landscape using TCRs and TCR-like molecules. This includes adoptive cell transfer of T cells expressing endogenous or engineered TCRs, TCR bispecific engagers and antibodies specific for human leukocyte antigen (HLA)-bound peptides (TCR mimics). We discuss the unique complexities associated with the clinical development of these therapeutics, such as HLA restriction, TCR retrieval, potency assessment and the potential for cross-reactivity. In addition, we highlight emerging clinical data that establish the antitumour potential of TCR-based therapies, including tumour-infiltrating lymphocytes, for the treatment of diverse human malignancies. Finally, we explore the future of TCR therapeutics, including emerging genome editing methods to safely enhance potency and strategies to streamline patient identification.


Subject(s)
Neoplasms , Proteome , Humans , Proteome/metabolism , CD8-Positive T-Lymphocytes/metabolism , Antigens, Neoplasm , Receptors, Antigen, T-Cell , Neoplasms/drug therapy
6.
bioRxiv ; 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37904942

ABSTRACT

T-cell-mediated immunotherapies are limited by the extent to which cancer-specific antigens are homogenously expressed throughout a tumor. We reasoned that recurrent splicing aberrations in cancer represent a potential source of tumor-wide and public neoantigens, and to test this possibility, we developed a novel pipeline for identifying neojunctions expressed uniformly within a tumor across diverse cancer types. Our analyses revealed multiple neojunctions that recur across patients and either exhibited intratumor heterogeneity or, in some cases, were tumor-wide. We identified CD8+ T-cell clones specific for neoantigens derived from tumor-wide and conserved neojunctions in GNAS and RPL22 , respectively. TCR-engineered CD8 + T-cells targeting these mutations conferred neoantigen-specific tumor cell eradication. Furthermore, we revealed that cancer-specific dysregulation in splicing factor expression leads to recurrent neojunction expression. Together, these data reveal that a subset of neojunctions are both intratumorally conserved and public, providing the molecular basis for novel T-cell-based immunotherapies that address intratumoral heterogeneity.

7.
Nat Med ; 29(12): 3077-3089, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37620627

ABSTRACT

Salivary gland cancers (SGCs) are rare, aggressive cancers without effective treatments when metastasized. We conducted a phase 2 trial evaluating nivolumab (nivo, anti-PD-1) and ipilimumab (ipi, anti-CTLA-4) in 64 patients with metastatic SGC enrolled in two histology-based cohorts (32 patients each): adenoid cystic carcinoma (ACC; cohort 1) and other SGCs (cohort 2). The primary efficacy endpoint (≥4 objective responses) was met in cohort 2 (5/32, 16%) but not in cohort 1 (2/32, 6%). Treatment safety/tolerability and progression-free survival (PFS) were secondary endpoints. Treatment-related adverse events grade ≥3 occurred in 24 of 64 (38%) patients across both cohorts, and median PFS was 4.4 months (95% confidence interval (CI): 2.4, 8.3) and 2.2 months (95% CI: 1.8, 5.3) for cohorts 1 and 2, respectively. We present whole-exome, RNA and T cell receptor (TCR) sequencing data from pre-treatment and on-treatment tumors and immune cell flow cytometry and TCR sequencing from peripheral blood at serial timepoints. Responding tumors universally demonstrated clonal expansion of pre-existing T cells and mutational contraction. Responding ACCs harbored neoantigens, including fusion-derived neoepitopes, that induced T cell responses ex vivo. This study shows that nivo+ipi has limited efficacy in ACC, albeit with infrequent, exceptional responses, and that it could be promising for non-ACC SGCs, particularly salivary duct carcinomas. ClinicalTrials.gov identifier: NCT03172624 .


Subject(s)
Carcinoma , Salivary Gland Neoplasms , Humans , Nivolumab/adverse effects , Ipilimumab/therapeutic use , Salivary Gland Neoplasms/drug therapy , Salivary Gland Neoplasms/genetics , Salivary Gland Neoplasms/chemically induced , Receptors, Antigen, T-Cell , Antineoplastic Combined Chemotherapy Protocols/adverse effects
8.
J Transl Med ; 21(1): 488, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37475035

ABSTRACT

The discovery and development of novel treatments that harness the patient's immune system and prevent immune escape has dramatically improved outcomes for patients across cancer types. However, not all patients respond to immunotherapy, acquired resistance remains a challenge, and responses are poor in certain tumors which are considered to be immunologically cold. This has led to the need for new immunotherapy-based approaches, including adoptive cell transfer (ACT), therapeutic vaccines, and novel immune checkpoint inhibitors. These new approaches are focused on patients with an inadequate response to current treatments, with emerging evidence of improved responses in various cancers with new immunotherapy agents, often in combinations with existing agents. The use of cell therapies, drivers of immune response, and trends in immunotherapy were the focus of the Immunotherapy Bridge (November 30th-December 1st, 2022), organized by the Fondazione Melanoma Onlus, Naples, Italy, in collaboration with the Society for Immunotherapy of Cancer.


Subject(s)
Melanoma , Humans , Immunotherapy , Immunotherapy, Adoptive , Italy , Melanoma/pathology , Tumor Microenvironment
9.
Immunity ; 56(1): 93-106.e6, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36574773

ABSTRACT

Improved identification of anti-tumor T cells is needed to advance cancer immunotherapies. CD39 expression is a promising surrogate of tumor-reactive CD8+ T cells. Here, we comprehensively profiled CD39 expression in human lung cancer. CD39 expression enriched for CD8+ T cells with features of exhaustion, tumor reactivity, and clonal expansion. Flow cytometry of 440 lung cancer biospecimens revealed weak association between CD39+ CD8+ T cells and tumoral features, such as programmed death-ligand 1 (PD-L1), tumor mutation burden, and driver mutations. Immune checkpoint blockade (ICB), but not cytotoxic chemotherapy, increased intratumoral CD39+ CD8+ T cells. Higher baseline frequency of CD39+ CD8+ T cells conferred improved clinical outcomes from ICB therapy. Furthermore, a gene signature of CD39+ CD8+ T cells predicted benefit from ICB, but not chemotherapy, in a phase III clinical trial of non-small cell lung cancer. These findings highlight CD39 as a proxy of tumor-reactive CD8+ T cells in human lung cancer.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Lung Neoplasms/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Immune Checkpoint Inhibitors/therapeutic use , CD8-Positive T-Lymphocytes , Immunotherapy
10.
Cancer Cell ; 40(12): 1454-1456, 2022 12 12.
Article in English | MEDLINE | ID: mdl-36513045

ABSTRACT

Combining immune receptor engineering with conditional expression of accessory molecules holds great promise for advancing the field of cell-based immunotherapies. In this issue of Cancer Cell, Smole et al. introduce a modular single vector system to simultaneously redirect T cell specificity toward cancer antigens while achieving activation-gated delivery of customizable payloads.


Subject(s)
Neoplasms , T-Lymphocytes , Humans , Immunotherapy , Neoplasms/therapy
11.
Nat Rev Clin Oncol ; 19(12): 775-790, 2022 12.
Article in English | MEDLINE | ID: mdl-36216928

ABSTRACT

Immunotherapy has been a remarkable clinical advancement in the treatment of cancer. T cells are pivotal to the efficacy of current cancer immunotherapies, including immune-checkpoint inhibitors and adoptive cell therapies. However, cancer is associated with T cell exhaustion, a hypofunctional state characterized by progressive loss of T cell effector functions and self-renewal capacity. The 'un-exhausting' of T cells in the tumour microenvironment is commonly regarded as a key mechanism of action for immune-checkpoint inhibitors, and T cell exhaustion is considered a pathway of resistance for cellular immunotherapies. Several elegant studies have provided important insights into the transcriptional and epigenetic programmes that govern T cell exhaustion. In this Review, we highlight recent discoveries related to the immunobiology of T cell exhaustion that offer a more nuanced perspective beyond this hypofunctional state being entirely undesirable. We review evidence that T cell exhaustion might be as much a reflection as it is the cause of poor tumour control. Furthermore, we hypothesize that, in certain contexts of chronic antigen stimulation, interruption of the exhaustion programme might impair T cell persistence. Therefore, the prioritization of interventions that mitigate the development of T cell exhaustion, including orthogonal cytoreduction therapies and novel cellular engineering strategies, might ultimately confer superior clinical outcomes and the greatest advances in cancer immunotherapy.


Subject(s)
Neoplasms , T-Lymphocytes , Humans , Immune Checkpoint Inhibitors , Immunotherapy , Immunotherapy, Adoptive , Tumor Microenvironment
12.
Cancer Immunol Res ; 10(8): 919, 2022 08 03.
Article in English | MEDLINE | ID: mdl-35767244

ABSTRACT

T-cell receptors (TCR) are an antigen receptor class that can uniquely respond to epitopes resulting from cytosolic and intranuclear proteins. In this issue, Kim and colleagues report the first successful application of TCR gene therapy targeting a shared, or public, neoantigen resulting from a TP53 hotspot mutation. These results establish clinical proof of concept that an off-the-shelf TCR targeting a recurrent mutation in a molecular driver of oncogenesis can benefit patients with metastatic cancer. See related article by Kim et al., p. 932 (4) .


Subject(s)
Lymphocytes, Tumor-Infiltrating , Neoplasms , Antigens, Neoplasm/immunology , Genes, T-Cell Receptor , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Mutation , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/therapy , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/immunology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
13.
J Transl Med ; 20(1): 257, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35672823

ABSTRACT

Over the past decade, immunotherapy has become an increasingly fundamental modality in the treatment of cancer. The positive impact of immune checkpoint inhibition, especially anti-programmed death (PD)-1/PD-ligand (L)1 blockade, in patients with different cancers has focused attention on the potential for other immunotherapeutic approaches. These include inhibitors of additional immune checkpoints, adoptive cell transfer (ACT), and therapeutic vaccines. Patients with advanced cancers who previously had limited treatment options available may now benefit from immunotherapies that can offer durable responses and improved survival outcomes. However, despite this, a significant proportion of patients fail to respond to immunotherapy, especially those with less immunoresponsive cancer types, and there remains a need for new treatment strategies.The virtual Immunotherapy Bridge (December 1st-2nd, 2021), organized by the Fondazione Melanoma Onlus, Naples, Italy in collaboration with the Society for Immunotherapy of Cancer addressed several areas of current research in immunotherapy, including lessons learned from cell therapies, drivers of immune response, and trends in immunotherapy across different cancers, and these are summarised here.


Subject(s)
Biomarkers, Tumor , Melanoma , Biomarkers, Tumor/metabolism , Humans , Immunologic Factors , Immunotherapy , Italy
14.
Nat Med ; 28(5): 946-957, 2022 05.
Article in English | MEDLINE | ID: mdl-35484264

ABSTRACT

Public neoantigens (NeoAgs) represent an elite class of shared cancer-specific epitopes derived from recurrently mutated driver genes. Here we describe a high-throughput platform combining single-cell transcriptomic and T cell receptor (TCR) sequencing to establish whether mutant PIK3CA, among the most frequently genomically altered driver oncogenes, generates an immunogenic public NeoAg. Using this strategy, we developed a panel of TCRs that recognize an endogenously processed neopeptide encompassing a common PIK3CA hotspot mutation restricted by the prevalent human leukocyte antigen (HLA)-A*03:01 allele. Mechanistically, immunogenicity to this public NeoAg arises from enhanced neopeptide/HLA complex stability caused by a preferred HLA anchor substitution. Structural studies indicated that the HLA-bound neopeptide presents a comparatively 'featureless' surface dominated by the peptide's backbone. To bind this epitope with high specificity and affinity, we discovered that a lead TCR clinical candidate engages the neopeptide through an extended interface facilitated by an unusually long CDR3ß loop. In patients with diverse malignancies, we observed NeoAg clonal conservation and spontaneous immunogenicity to the neoepitope. Finally, adoptive transfer of TCR-engineered T cells led to tumor regression in vivo in mice bearing PIK3CA-mutant tumors but not wild-type PIK3CA tumors. Together, these findings establish the immunogenicity and therapeutic potential of a mutant PIK3CA-derived public NeoAg.


Subject(s)
Antigens, Neoplasm , Neoplasms , Animals , Antigens, Neoplasm/genetics , Class I Phosphatidylinositol 3-Kinases/genetics , Humans , Mice , Mutation/genetics , Neoplasms/genetics , Receptors, Antigen, T-Cell
15.
J Cardiovasc Magn Reson ; 23(1): 42, 2021 04 05.
Article in English | MEDLINE | ID: mdl-33814005

ABSTRACT

BACKGROUND: Late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) is widely used to identify cardiac neoplasms, for which diagnosis is predicated on enhancement stemming from lesion vascularity: Impact of contrast-enhancement pattern on clinical outcomes is unknown. The objective of this study was to determine whether cardiac metastasis (CMET) enhancement pattern on LGE-CMR impacts prognosis, with focus on heterogeneous lesion enhancement as a marker of tumor avascularity. METHODS: Advanced (stage IV) systemic cancer patients with and without CMET matched (1:1) by cancer etiology underwent a standardized CMR protocol. CMET was identified via established LGE-CMR criteria based on lesion enhancement; enhancement pattern was further classified as heterogeneous (enhancing and non-enhancing components) or diffuse and assessed via quantitative (contrast-to-noise ratio (CNR); signal-to-noise ratio (SNR)) analyses. Embolic events and mortality were tested in relation to lesion location and contrast-enhancement pattern. RESULTS: 224 patients were studied, including 112 patients with CMET and unaffected (CMET -) controls matched for systemic cancer etiology/stage. CMET enhancement pattern varied (53% heterogeneous, 47% diffuse). Quantitative analyses were consistent with lesion classification; CNR was higher and SNR lower in heterogeneously enhancing CMET (p < 0.001)-paralleled by larger size based on linear dimensions (p < 0.05). Contrast-enhancement pattern did not vary based on lesion location (p = NS). Embolic events were similar between patients with diffuse and heterogeneous lesions (p = NS) but varied by location: Patients with right-sided lesions had threefold more pulmonary emboli (20% vs. 6%, p = 0.02); those with left-sided lesions had lower rates equivalent to controls (4% vs. 5%, p = 1.00). Mortality was higher among patients with CMET (hazard ratio [HR] = 1.64 [CI 1.17-2.29], p = 0.004) compared to controls, but varied by contrast-enhancement pattern: Diffusely enhancing CMET had equivalent mortality to controls (p = 0.21) whereas prognosis was worse with heterogeneous CMET (p = 0.005) and more strongly predicted by heterogeneous enhancement (HR = 1.97 [CI 1.23-3.15], p = 0.005) than lesion size (HR = 1.11 per 10 cm [CI 0.53-2.33], p = 0.79). CONCLUSIONS: Contrast-enhancement pattern and location of CMET on CMR impacts prognosis. Embolic events vary by CMET location, with likelihood of PE greatest with right-sided lesions. Heterogeneous enhancement-a marker of tumor avascularity on LGE-CMR-is a novel marker of increased mortality risk.


Subject(s)
Contrast Media , Heart Neoplasms/blood supply , Heart Neoplasms/diagnostic imaging , Magnetic Resonance Imaging, Cine , Meglumine , Neoplastic Cells, Circulating/pathology , Organometallic Compounds , Adult , Aged , Case-Control Studies , Female , Heart Neoplasms/mortality , Heart Neoplasms/secondary , Humans , Male , Middle Aged , Neoplasm Grading , Neoplasm Staging , New York City , Predictive Value of Tests , Prognosis , Risk Assessment , Risk Factors
16.
Immunity ; 54(3): 406-408, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33691131

ABSTRACT

In vivo genetic screens using CRISPR-Cas9 are a powerful tool to resolve the molecular determinants of response and resistance to cancer immunotherapies; however, vector immunogenicity can introduce artifact. In this issue of Immunity, Dubrot et al. report a strategy to "erase" vector-associated neoantigens, enabling a more physiologic assessment of tumor-immune cell interactions in immunocompetent hosts.


Subject(s)
CRISPR-Cas Systems , Genetic Therapy , Antigens , CRISPR-Cas Systems/genetics , Humans , Iatrogenic Disease , Immunotherapy
17.
Clin Cancer Res ; 26(21): 5609-5620, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32847933

ABSTRACT

PURPOSE: Tumor-associated macrophages correlate with increased invasiveness, growth, and immunosuppression. Activation of the colony-stimulating factor-1 receptor (CSF-1R) results in proliferation, differentiation, and migration of monocytes/macrophages. This phase I study evaluated the immunologic and clinical activity, and safety profile of CSF-1R inhibition with the mAb LY3022855. PATIENTS AND METHODS: Patients with advanced refractory metastatic breast cancer (MBC) or metastatic castration-resistant prostate cancer (mCRPC) were treated with LY3022855 intravenously in 6-week cycles in cohorts: (A) 1.25 mg/kg every 2 weeks (Q2W); (B) 1.0 mg/kg on weeks 1, 2, 4, and 5; (C) 100 mg once weekly; (D)100 mg Q2W. mCRPC patients were enrolled in cohorts A and B; patients with MBC were enrolled in all cohorts. Efficacy was assessed by RECIST and Prostate Cancer Clinical Trials Working Group 2 criteria. RESULTS: Thirty-four patients (22 MBC; 12 mCRPC) received ≥1 dose of LY3022855. At day 8, circulating CSF-1 levels increased and proinflammatory monocytes CD14DIMCD16BRIGHT decreased. Best RECIST response was stable disease in five patients with MBC (23%; duration, 82-302 days) and three patients with mCRPC (25%; duration, 50-124 days). Two patients with MBC (cohort A) had durable stable disease >9 months and a third patient with MBC had palpable reduction in a nontarget neck mass. Immune-related gene activation in tumor biopsies posttreatment was observed. Common any grade treatment-related adverse events were fatigue, decreased appetite, nausea, asymptomatic increased lipase, and creatine phosphokinase. CONCLUSIONS: LY3022855 was well tolerated and showed evidence of immune modulation. Clinically meaningful stable disease >9 months was observed in two patients with MBC.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Breast Neoplasms/drug therapy , Prostatic Neoplasms, Castration-Resistant/drug therapy , Receptor, Macrophage Colony-Stimulating Factor/genetics , Adult , Aged , Aged, 80 and over , Antibodies, Monoclonal/adverse effects , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Drug-Related Side Effects and Adverse Reactions/classification , Drug-Related Side Effects and Adverse Reactions/epidemiology , Drug-Related Side Effects and Adverse Reactions/pathology , Female , Humans , Immunologic Factors/administration & dosage , Immunologic Factors/adverse effects , Lipopolysaccharide Receptors/genetics , Male , Middle Aged , Neoplasm Metastasis , Neoplasm Staging , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Receptor, Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Receptors, IgG/genetics
18.
Cancer Immunol Res ; 8(5): 672-684, 2020 05.
Article in English | MEDLINE | ID: mdl-32184297

ABSTRACT

T-cell receptor (TCR)-based therapeutic cells and agents have emerged as a new class of effective cancer therapies. These therapies work on cells that express intracellular cancer-associated proteins by targeting peptides displayed on MHC receptors. However, cross-reactivities of these agents to off-target cells and tissues have resulted in serious, sometimes fatal, adverse events. We have developed a high-throughput genetic platform (termed "PresentER") that encodes MHC-I peptide minigenes for functional immunologic assays and determines the reactivities of TCR-like therapeutic agents against large libraries of MHC-I ligands. In this article, we demonstrated that PresentER could be used to identify the on-and-off targets of T cells and TCR-mimic (TCRm) antibodies using in vitro coculture assays or binding assays. We found dozens of MHC-I ligands that were cross-reactive with two TCRm antibodies and two native TCRs and that were not easily predictable by other methods.


Subject(s)
Cross Reactions/immunology , High-Throughput Screening Assays/methods , Histocompatibility Antigens Class I/genetics , Major Histocompatibility Complex/immunology , Neoplasms/immunology , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes/immunology , Animals , Cell Line, Tumor , Disease Models, Animal , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , Mice , Mice, Inbred C57BL , Neoplasms/genetics , Neoplasms/therapy , Receptors, Antigen, T-Cell/immunology
19.
Cancer Immunol Res ; 8(6): 743-755, 2020 06.
Article in English | MEDLINE | ID: mdl-32209638

ABSTRACT

T-cell receptor (TCR)-modified T-cell gene therapy can target a variety of extracellular and intracellular tumor-associated antigens, yet has had little clinical success. A potential explanation for limited antitumor efficacy is a lack of T-cell activation in vivo We postulated that expression of proinflammatory cytokines in TCR-modified T cells would activate T cells and enhance antitumor efficacy. We demonstrate that expression of interleukin 18 (IL18) in tumor-directed TCR-modified T cells provides a superior proinflammatory signal than expression of interleukin 12 (IL12). Tumor-targeted T cells secreting IL18 promote persistent and functional effector T cells and a proinflammatory tumor microenvironment. Together, these effects augmented overall survival of mice in the pmel-1 syngeneic tumor model. When combined with sublethal irradiation, IL18-secreting pmel-1 T cells were able to eradicate tumors, whereas IL12-secreting pmel-1 T cells caused toxicity in mice through excessive cytokine secretion. In another xenograft tumor model, IL18 secretion enhanced the persistence and antitumor efficacy of NY-ESO-1-reactive TCR-modified human T cells as well as overall survival of tumor-bearing mice. These results demonstrate a rationale for optimizing the efficacy of TCR-modified T-cell cancer therapy through expression of IL18.See related commentary by Wijewarnasuriya et al., p. 732.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunotherapy, Adoptive/standards , Interleukin-12/metabolism , Interleukin-18/metabolism , Lymphocyte Activation/immunology , Melanoma/therapy , Receptors, Antigen, T-Cell/immunology , Animals , Antigens, Neoplasm/immunology , Apoptosis , CD8-Positive T-Lymphocytes/metabolism , Cell Proliferation , Humans , Immunotherapy, Adoptive/methods , Melanoma/immunology , Melanoma/metabolism , Melanoma/pathology , Melanoma, Experimental/immunology , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Melanoma, Experimental/therapy , Mice , Mice, Knockout , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
20.
Immunol Rev ; 290(1): 127-147, 2019 07.
Article in English | MEDLINE | ID: mdl-31355495

ABSTRACT

Adoptive cell transfer (ACT) using chimeric antigen receptor (CAR)-modified T cells can induce durable remissions in patients with refractory B-lymphoid cancers. By contrast, results applying CAR-modified T cells to solid malignancies have been comparatively modest. Alternative strategies to redirect T cell specificity and cytolytic function are therefore necessary if ACT is to serve a greater role in human cancer treatments. T cell receptors (TCRs) are antigen recognition structures physiologically expressed by all T cells that have complementary, and in some cases superior, properties to CARs. Unlike CARs, TCRs confer recognition to epitopes derived from proteins residing within any subcellular compartment, including the membrane, cytoplasm and nucleus. This enables TCRs to detect a broad universe of targets, such as neoantigens, cancer germline antigens, and viral oncoproteins. Moreover, because TCRs have evolved to efficiently detect and amplify antigenic signals, these receptors respond to epitope densities many fold smaller than required for CAR-signaling. Herein, we summarize recent clinical data demonstrating that TCR-based immunotherapies can mediate regression of solid malignancies, including immune-checkpoint inhibitor refractory cancers. These trials simultaneously highlight emerging mechanisms of TCR resistance. We conclude by discussing how TCR-based immunotherapies can achieve broader dissemination through innovations in cell manufacturing and non-viral genome integration techniques.


Subject(s)
Immunotherapy, Adoptive , Neoplasms/immunology , Neoplasms/therapy , Receptors, Antigen, T-Cell/metabolism , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Animals , Antigens, Neoplasm/immunology , Clinical Studies as Topic , Genetic Engineering , Humans , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Neoplasms/metabolism , Receptors, Antigen, T-Cell/genetics , Receptors, Chimeric Antigen/genetics , T-Cell Antigen Receptor Specificity , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL