Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters








Database
Language
Publication year range
1.
Sci Rep ; 14(1): 15930, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987305

ABSTRACT

The paper reports a low-cost handheld source of a cold air plasma intended for biomedical applications that can be made by anyone (detailed technical information and a step-by-step guide for creating the NTP source are provided). The plasma source employs a 1.4 W corona discharge in the needle-to-cone electrode configuration and is an extremely simple device, consisting basically of two electrodes and a cheap power supply. To achieve the best bactericidal effect, the plasma source has been optimized on Escherichia coli. The bactericidal ability of the plasma source was further tested on a wide range of microorganisms: Staphylococcus aureus as a representative of gram-positive bacteria, Pseudomonas aeruginosa as gram-negative bacteria, Candida albicans as yeasts, Trichophyton interdigitale as microfungi, and Deinococcus radiodurans as a representative of extremophilic bacteria resistant to many DNA-damaging agents, including ultraviolet and ionizing radiation. The testing showed that the plasma source inactivates all the microorganisms tested in several minutes (up to 105-107 CFU depending on a microorganism), proving its effectiveness against a wide spectrum of pathogens, in particular microfungi, yeasts, gram-positive and gram-negative bacteria. Studies of long-lived reactive species such as ozone, nitrogen oxides, hydrogen peroxide, nitrite, and nitrate revealed a strong correlation between ozone and the bactericidal effect, indicating that the bactericidal effect should generally be attributed to reactive oxygen species. This is the first comprehensive study of the bactericidal effect of a corona discharge in air and the formation of long-lived reactive species by the discharge, depending on both the interelectrode distance and the discharge current.


Subject(s)
Plasma Gases , Plasma Gases/pharmacology , Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Candida albicans/drug effects
2.
J Appl Microbiol ; 135(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38749678

ABSTRACT

AIM: The main objective of the study was to develop and validate a model for the growth of Aspergillus brasiliensis on surfaces, specifically on agar culture medium. An additional aim was to determine conditions for complete growth inhibition of this micromycete using two different nonthermal plasma (NTP) sources. METHODS AND RESULTS: The developed model uses two key parameters, namely the growth rate and growth delay, which depend on the cultivation temperature and the amount of inoculum. These parameters well describe the growth of A. brasiliensis and the effect of NTP on it. For complete fungus inactivation, a single 10-minute exposure to a diffuse coplanar surface barrier discharge was sufficient, while a point-to-ring corona discharge required several repeated 10-minute exposures at 24-h intervals. CONCLUSIONS: The article presents a model for simulating the surface growth of A. brasiliensis and evaluates the effectiveness of two NTP sources in deactivating fungi on agar media.


Subject(s)
Aspergillus , Culture Media , Plasma Gases , Aspergillus/growth & development , Aspergillus/drug effects , Plasma Gases/pharmacology , Models, Biological , Temperature , Agar
3.
Molecules ; 27(1)2021 Dec 31.
Article in English | MEDLINE | ID: mdl-35011483

ABSTRACT

A non-thermal plasma (NTP) is a promising tool against the development of bacterial, viral, and fungal diseases. The recently revealed development of microbial resistance to traditional drugs has increased interest in the use of NTPs. We have studied and compared the physical and microbicidal properties of two types of NTP sources based on a cometary discharge in the point-to-point electrode configuration and a corona discharge in the point-to-ring electrode configuration. The electrical and emission properties of both discharges are reported. The microbicidal effect of NTP sources was tested on three strains of the bacterium Staphylococcus aureus (including the methicillin-resistant strain), the bacterium Pseudomonas aeruginosa, the yeast Candida albicans, and the micromycete Trichophyton interdigitale. In general, the cometary discharge is a less stable source of NTP and mostly forms smaller but more rapidly emerging inhibition zones on agar plates. Due to the point-to-ring electrode configuration, the second type of discharge has higher stability and provides larger affected but often not completely inhibited zones. However, after 60 min of exposure, the NTP sources based on the cometary and point-to-ring discharges showed a similar microbicidal effect for bacteria and an individual effect for microscopic fungi.

SELECTION OF CITATIONS
SEARCH DETAIL