Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters








Database
Language
Publication year range
1.
Nat Commun ; 15(1): 5988, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013881

ABSTRACT

Maintenance of water homeostasis is a fundamental cellular process required by all living organisms. Here, we use the single-celled green alga Chlamydomonas reinhardtii to establish a foundational understanding of osmotic-stress signaling pathways through transcriptomics, phosphoproteomics, and functional genomics approaches. Comparison of pathways identified through these analyses with yeast and Arabidopsis allows us to infer their evolutionary conservation and divergence across these lineages. 76 genes, acting across diverse cellular compartments, were found to be important for osmotic-stress tolerance in Chlamydomonas through their functions in cytoskeletal organization, potassium transport, vesicle trafficking, mitogen-activated protein kinase and chloroplast signaling. We show that homologs for five of these genes have conserved functions in stress tolerance in Arabidopsis and reveal a novel PROFILIN-dependent stage of acclimation affecting the actin cytoskeleton that ensures tissue integrity upon osmotic stress. This study highlights the conservation of the stress response in algae and land plants, and establishes Chlamydomonas as a unicellular plant model system to dissect the osmotic stress signaling pathway.


Subject(s)
Arabidopsis , Chlamydomonas reinhardtii , Osmotic Pressure , Signal Transduction , Chlamydomonas reinhardtii/metabolism , Chlamydomonas reinhardtii/genetics , Arabidopsis/metabolism , Arabidopsis/genetics , Proteomics , Gene Expression Regulation, Plant , Genomics , Stress, Physiological , Plant Proteins/metabolism , Plant Proteins/genetics , Transcriptome , Cell Compartmentation , Chloroplasts/metabolism , Multiomics
2.
Science ; 377(6607): 747-751, 2022 08 12.
Article in English | MEDLINE | ID: mdl-35951698

ABSTRACT

The shape of a plant's root system influences its ability to reach essential nutrients in the soil and to acquire water during drought. Progress in engineering plant roots to optimize water and nutrient acquisition has been limited by our capacity to design and build genetic programs that alter root growth in a predictable manner. We developed a collection of synthetic transcriptional regulators for plants that can be compiled to create genetic circuits. These circuits control gene expression by performing Boolean logic operations and can be used to predictably alter root structure. This work demonstrates the potential of synthetic genetic circuits to control gene expression across tissues and reprogram plant growth.


Subject(s)
Gene Expression Regulation, Plant , Gene Regulatory Networks , Genes, Synthetic , Plant Roots , Plant Roots/genetics , Plant Roots/growth & development , Soil , Water/metabolism
3.
Int J Mol Sci ; 22(22)2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34829981

ABSTRACT

Homologous recombination (HR) typically occurs during meiosis between homologs, at a few unplanned locations along the chromosomes. In this study, we tested whether targeted recombination between homologous chromosomes can be achieved via Clustered Regulatory Interspaced Short Palindromic Repeat associated protein Cas9 (CRISPR-Cas9)-induced DNA double-strand break (DSB) repair in Arabidopsis thaliana. Our experimental system includes targets for DSB induction in euchromatic and heterochromatic genomic regions of hybrid F1 plants, in one or both parental chromosomes, using phenotypic and molecular markers to measure Non-Homologous End Joining and HR repair. We present a series of evidence showing that targeted DSBs can be repaired via HR using a homologous chromosome as the template in various chromatin contexts including in pericentric regions. Targeted crossover was rare, but gene conversion events were the most frequent outcome of HR and were found in both "hot and cold" regions. The length of the conversion tracts was variable, ranging from 5 to 7505 bp. In addition, a typical feature of these tracks was that they often were interrupted. Our findings pave the way for the use of targeted gene-conversion for precise breeding.


Subject(s)
Arabidopsis/genetics , Euchromatin/genetics , Heterochromatin/genetics , Homologous Recombination/genetics , Arabidopsis/growth & development , CRISPR-Cas Systems/genetics , DNA Breaks, Double-Stranded , DNA End-Joining Repair/genetics , Genome, Plant/genetics , Recombinational DNA Repair/genetics
4.
Nat Methods ; 16(2): 205, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30602782

ABSTRACT

The version of Supplementary Table 1 originally published online with this article contained incorrect localization annotations for one plate. This error has been corrected in the online Supplementary Information.

5.
Nat Methods ; 15(8): 617-622, 2018 08.
Article in English | MEDLINE | ID: mdl-29988094

ABSTRACT

Yeast libraries revolutionized the systematic study of cell biology. To extensively increase the number of such libraries, we used our previously devised SWAp-Tag (SWAT) approach to construct a genome-wide library of ~5,500 strains carrying the SWAT NOP1promoter-GFP module at the N terminus of proteins. In addition, we created six diverse libraries that restored the native regulation, created an overexpression library with a Cherry tag, or enabled protein complementation assays from two fragments of an enzyme or fluorophore. We developed methods utilizing these SWAT collections to systematically characterize the yeast proteome for protein abundance, localization, topology, and interactions.


Subject(s)
Genome, Fungal , Genomic Library , Proteome/genetics , Saccharomyces cerevisiae/genetics , Genetic Complementation Test , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Promoter Regions, Genetic , Protein Interaction Mapping , Proteome/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Ribonucleoproteins, Small Nucleolar/genetics , Ribonucleoproteins, Small Nucleolar/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sequence Tagged Sites
SELECTION OF CITATIONS
SEARCH DETAIL