Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters








Publication year range
1.
Ann N Y Acad Sci ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896114

ABSTRACT

Jumping requires high actuation power for achieving high speed in a short time. Especially, organisms and robots at the insect scale jump in order to overcome size limits on the speed of locomotion. As small jumpers suffer from intrinsically small power output, efficient jumpers have devised various ingenuous schemes to amplify their power release. Furthermore, semi-aquatic jumpers have adopted specialized techniques to fully exploit the reaction from water. We review jumping mechanisms of natural and robotic insects that jump on the ground and the surface of water, and compare the performance depending on their scale. We find a general trend that jumping creatures maximize jumping speed by unique mechanisms that manage acceleration, force, and takeoff duration under the constraints mainly associated with their size, shape, and substrate.

2.
Soft Robot ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38557238

ABSTRACT

Microgrippers that incorporate soft actuators are appropriate for micromanipulation or microsurgery owing to their ability to grasp objects without causing damage. However, developing a microgripper with a large gripping range that can produce a large force with high speed remains challenging in soft actuation mechanisms. Herein, we introduce a compliant microgripper driven by a soft dielectric elastomer actuator (DEA) called a spiral flexure cone DEA (SFCDEA). The submillimeter-scale SFCDEA exhibited a controllable linear displacement over a high bandwidth and the capability of lifting 100.9 g, which was 670 times higher than its mass. Subsequently, we developed a compliant microgripper based on the SFCDEA using smart composite microstructure technology to fabricate three-dimensional gripper linkages. We demonstrated that the microgripper was able to grasp various millimeter-scale objects with different shapes, sizes, and weights without a complex feedback control owing to its compliance. We proved the versatility of our gripper in robotic manipulation by demonstrating adaptive grasping and releasing of small objects using vibrations owing to its high bandwidth.

3.
PLoS One ; 18(11): e0294447, 2023.
Article in English | MEDLINE | ID: mdl-37983213

ABSTRACT

This pioneering study aims to revolutionize self-symptom management and telemedicine-based remote monitoring through the development of a real-time wheeze counting algorithm. Leveraging a novel approach that includes the detailed labeling of one breathing cycle into three types: break, normal, and wheeze, this study not only identifies abnormal sounds within each breath but also captures comprehensive data on their location, duration, and relationships within entire respiratory cycles, including atypical patterns. This innovative strategy is based on a combination of a one-dimensional convolutional neural network (1D-CNN) and a long short-term memory (LSTM) network model, enabling real-time analysis of respiratory sounds. Notably, it stands out for its capacity to handle continuous data, distinguishing it from conventional lung sound classification algorithms. The study utilizes a substantial dataset consisting of 535 respiration cycles from diverse sources, including the Child Sim Lung Sound Simulator, the EMTprep Open-Source Database, Clinical Patient Records, and the ICBHI 2017 Challenge Database. Achieving a classification accuracy of 90%, the exceptional result metrics encompass the identification of each breath cycle and simultaneous detection of the abnormal sound, enabling the real-time wheeze counting of all respirations. This innovative wheeze counter holds the promise of revolutionizing research on predicting lung diseases based on long-term breathing patterns and offers applicability in clinical and non-clinical settings for on-the-go detection and remote intervention of exacerbated respiratory symptoms.


Subject(s)
Deep Learning , Lung Diseases , Child , Humans , Respiratory Sounds/diagnosis , Algorithms , Lung Diseases/diagnosis , Neural Networks, Computer
4.
Bioinspir Biomim ; 18(5)2023 08 08.
Article in English | MEDLINE | ID: mdl-37552773

ABSTRACT

Recent observations of wingless animals, including jumping nematodes, springtails, insects, and wingless vertebrates like geckos, snakes, and salamanders, have shown that their adaptations and body morphing are essential for rapid self-righting and controlled landing. These skills can reduce the risk of physical damage during collision, minimize recoil during landing, and allow for a quick escape response to minimize predation risk. The size, mass distribution, and speed of an animal determine its self-righting method, with larger animals depending on the conservation of angular momentum and smaller animals primarily using aerodynamic forces. Many animals falling through the air, from nematodes to salamanders, adopt a skydiving posture while descending. Similarly, plant seeds such as dandelions and samaras are able to turn upright in mid-air using aerodynamic forces and produce high decelerations. These aerial capabilities allow for a wide dispersal range, low-impact collisions, and effective landing and settling. Recently, small robots that can right themselves for controlled landings have been designed based on principles of aerial maneuvering in animals. Further research into the effects of unsteady flows on self-righting and landing in small arthropods, particularly those exhibiting explosive catapulting, could reveal how morphological features, flow dynamics, and physical mechanisms contribute to effective mid-air control. More broadly, studying apterygote (wingless insects) landing could also provide insight into the origin of insect flight. These research efforts have the potential to lead to the bio-inspired design of aerial micro-vehicles, sports projectiles, parachutes, and impulsive robots that can land upright in unsteady flow conditions.


Subject(s)
Robotics , Animals , Flight, Animal/physiology , Insecta , Gravitation , Seeds , Biomechanical Phenomena
5.
Sci Rep ; 13(1): 4869, 2023 03 24.
Article in English | MEDLINE | ID: mdl-36964180

ABSTRACT

Anchoring components are added to wearable robots to ensure a stable interaction between the suits and the human body and to minimize the displacement of the suits. However, these components can apply pressure to the body and can cause user dissatisfaction, which can decrease willingness to use the suits. Therefore, this study aims to develop a suit-type soft-wearable robot platform for walking assistance by providing comfortable garment pressure to ensure user satisfaction. The first prototype of a wearable robot suit was developed with anchoring components on the shoulders, waist, and thighs based on previous research results. Wear tests were conducted to measure garment pressure depending on posture using pressure sensors, and satisfaction surveys were conducted. The second prototype design was then developed, and performance tests with flexible artificial muscles and a satisfaction survey were conducted. Regarding the first prototype, the participants felt more than normal pressure in the shoulders and relatively less pressure in the thighs and calves. Thus, compared to the first design, the second design ensured a decreased garment pressure and resulted in an improvement of overall user satisfaction. These results can help provide guidance in the development of wearable robots by taking pressure comfort and user satisfaction into consideration.


Subject(s)
Exoskeleton Device , Robotics , Wearable Electronic Devices , Humans , Muscles , Walking/physiology
6.
Nat Commun ; 14(1): 1473, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36927722

ABSTRACT

Momentum transfer from the water surface is strongly related to the dynamical scale and morphology of jumping animals. Here, we investigate the scale-dependent momentum transfer of various jumping organisms and engineered systems at an air-water interface. A simplified analytical model for calculating the maximum momentum transfer identifies an intermediate dynamical scale region highly disadvantageous for jumping on water. The Weber number of the systems should be designed far from 1 to achieve high jumping performance on water. We design a relatively large water-jumping robot in the drag-dominant scale range, having a high Weber number, for maximum jumping height and distance. The jumping robot, around 10 times larger than water striders, has a take-off speed of 3.6 m/s facilitated by drag-based propulsion, which is the highest value reported thus far. The scale-dependent hydrodynamics of water jumpers provides a useful framework for understanding nature and robotic system interacting with the water surface.

7.
Proc Natl Acad Sci U S A ; 119(46): e2211283119, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36343251

ABSTRACT

Springtails (Collembola) have been traditionally portrayed as explosive jumpers with incipient directional takeoff and uncontrolled landing. However, for these collembolans that live near the water, such skills are crucial for evading a host of voracious aquatic and terrestrial predators. We discover that semiaquatic springtails, Isotomurus retardatus, can perform directional jumps, rapid aerial righting, and near-perfect landing on the water surface. They achieve these locomotive controls by adjusting their body attitude and impulse during takeoff, deforming their body in midair, and exploiting the hydrophilicity of their ventral tube, known as the collophore. Experiments and mathematical modeling indicate that directional-impulse control during takeoff is driven by the collophore's adhesion force, the body angle, and the stroke duration produced by their jumping organ, the furcula. In midair, springtails curve their bodies to form a U-shape pose, which leverages aerodynamic forces to right themselves in less than ~20 ms, the fastest ever measured in animals. A stable equilibrium is facilitated by the water adhered to the collophore. Aerial righting was confirmed by placing springtails in a vertical wind tunnel and through physical models. Due to these aerial responses, springtails land on their ventral side ~85% of the time while anchoring via the collophore on the water surface to avoid bouncing. We validated the springtail biophysical principles in a bioinspired jumping robot that reduces in-flight rotation and lands upright ~75% of the time. Thus, contrary to common belief, these wingless hexapods can jump, skydive, and land with outstanding control that can be fundamental for survival.


Subject(s)
Arthropods , Animals , Arthropods/physiology , Rotation , Water , Biomechanical Phenomena
8.
Sci Robot ; 7(71): eabo6463, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36288271

ABSTRACT

Hydrogels have diverse chemical properties and can exhibit reversibly large mechanical deformations in response to external stimuli; these characteristics suggest that hydrogels are promising materials for soft robots. However, reported actuators based on hydrogels generally suffer from slow response speed and/or poor controllability due to intrinsic material limitations and electrode fabrication technologies. Here, we report a hydrogel actuator that operates at low voltages (<3 volts) with high performance (strain > 50%, energy density > 7 × 105 joules per cubic meter, and power density > 3 × 104 watts per cubic meter), surpassing existing hydrogel actuators and other types of electroactive soft actuators. The enhanced performance of our actuator is due to the formation of wrinkled nanomembrane electrodes that exhibit high conductivity and excellent mechanical deformation through capillary-assisted assembly of metal nanoparticles and deswelling-induced wrinkled structures. By applying an electric potential through the wrinkled nanomembrane electrodes that sandwich the hydrogel, we were able to trigger a reversible and substantial electroosmotic water flow inside a hydrogel film, which drove the controlled swelling of the hydrogel. The high energy efficiency and power density of our wrinkled nanomembrane electrode-induced actuator enabled the fabrication of an untethered insect-scale aquabot integrated with an on-board control unit demonstrating maneuverability with fast locomotion speed (1.02 body length per second), which occupies only 2% of the total mass of the robot.


Subject(s)
Hydrogels , Water , Animals , Hydrogels/chemistry , Electrodes , Electric Conductivity , Insecta
9.
Nat Commun ; 13(1): 4155, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35851053

ABSTRACT

An artificial muscle actuator resolves practical engineering problems in compact wearable devices, which are limited to conventional actuators such as electromagnetic actuators. Abstracting the fundamental advantages of an artificial muscle actuator provides a small-scale, high-power actuating system with a sensing capability for developing varifocal augmented reality glasses and naturally fit haptic gloves. Here, we design a shape memory alloy-based lightweight and high-power artificial muscle actuator, the so-called compliant amplified shape memory alloy actuator. Despite its light weight (0.22 g), the actuator has a high power density of 1.7 kW/kg, an actuation strain of 300% under 80 g of external payload. We show how the actuator enables image depth control and an immersive tactile response in the form of augmented reality glasses and two-way communication haptic gloves whose thin form factor and high power density can hardly be achieved by conventional actuators.


Subject(s)
Augmented Reality , Wearable Electronic Devices , Equipment Design , Muscles , Shape Memory Alloys
10.
Micromachines (Basel) ; 13(4)2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35457930

ABSTRACT

The agile and power-efficient locomotion of a water strider has inspired many water-walking devices. These bioinspired water strider robots generally adopt a DC motor to create a sculling trajectory of the driving leg. These robots are, thus, inevitably heavy with many supporting legs decreasing the velocity of the robots. There have only been a few attempts to employ smart materials despite their advantages of being lightweight and having high power densities. This paper proposes an artificial muscle-based water-walking robot capable of moving forward and turning with four degrees of freedom. A compliant amplified shape memory alloy actuator (CASA) used to amplify the strain of a shape memory alloy wire enables a wide sculling motion of the actuation leg with only four supporting legs to support the entire weight of the robot. Design parameters to increase the actuation strain of the actuator and to achieve a desired swing angle (80°) are analyzed. Finally, experiments to measure the forward speed and angular velocities of the robot are carried out to compare with other robots. The robot weighs only 0.236 g and has a maximum and average speed of 1.56, 0.31 body length per second and a maximum and average angular velocity of 145.05°/s and 14.72°/s.

11.
Soft Robot ; 9(5): 882-888, 2022 Oct.
Article in English | MEDLINE | ID: mdl-34704849

ABSTRACT

Many types of novel stretchable and conductive materials have been developed, but all exhibit a large increase in resistance upon stretching. In this article, the design and fabrication methods of two types of electromechanical metamaterials are presented, where the first has an invariant electrical resistance and the second has a decreasing electrical resistance upon elongation. The metamaterials can be fabricated by a few rapid and simple steps: a flexible polymer part is three-dimensional printed and sprayed with a conductive coating. Parametric optimization of the geometrical dimensions of the resistance invariant structure yielded a metamaterial with a nearly constant electrical resistance up to ∼1100% of tensile strain, whose behavior could be predicted using the finite element method. The second metamaterial had a resistance that reduced by as much as 38% over a displacement of 600 µm. The design principles of these new types of metamaterials can open new possibilities for high-performance soft robots and flexible electronics.

12.
Sci Robot ; 6(59): eabi6774, 2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34644158

ABSTRACT

Soft grippers that incorporate functional materials are important in the development of mechanically compliant and multifunctional interfaces for both sensing and stimulating soft objects and organisms. In particular, the capability for firm and delicate grasping of soft cells and organs without mechanical damage is essential to identify the condition of and monitor meaningful biosignals from objects. Here, we report a millimeter-scale soft gripper based on a shape memory polymer that enables manipulating a heavy object (payload-to-weight ratio up to 6400) and grasping organisms at the micro/milliscale. The silver nanowires and crack-based strain sensor embedded in this soft gripper enable simultaneous measurement of the temperature and pressure on grasped objects and offer temperature and mechanical stimuli for the grasped object. We validate our miniaturized soft gripper by demonstrating that it can grasp a snail egg while simultaneously applying a moderate temperature stimulation to induce hatching process and monitor the heart rate of a newborn snail. The results present the potential for widespread utility of soft grippers in the area of biomedical engineering, especially in the development of conditional or closed-loop interfacing with microscale biotissues and organisms.


Subject(s)
Biomedical Engineering , Equipment Design , Hand Strength/physiology , Robotics , Smart Materials/chemistry , Snails/physiology , Animals , Bioengineering , Biomimetics , Biotechnology/methods , Calibration , Elastic Modulus , Humans , Man-Machine Systems , Materials Testing , Nanowires , Pressure , Stress, Mechanical , Temperature
13.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Article in English | MEDLINE | ID: mdl-34389671

ABSTRACT

Efficient and effective generation of high-acceleration movement in biology requires a process to control energy flow and amplify mechanical power from power density-limited muscle. Until recently, this ability was exclusive to ultrafast, small organisms, and this process was largely ascribed to the high mechanical power density of small elastic recoil mechanisms. In several ultrafast organisms, linkages suddenly initiate rotation when they overcenter and reverse torque; this process mediates the release of stored elastic energy and enhances the mechanical power output of extremely fast, spring-actuated systems. Here we report the discovery of linkage dynamics and geometric latching that reveals how organisms and synthetic systems generate extremely high-acceleration, short-duration movements. Through synergistic analyses of mantis shrimp strikes, a synthetic mantis shrimp robot, and a dynamic mathematical model, we discover that linkages can exhibit distinct dynamic phases that control energy transfer from stored elastic energy to ultrafast movement. These design principles are embodied in a 1.5-g mantis shrimp scale mechanism capable of striking velocities over 26 m [Formula: see text] in air and 5 m [Formula: see text] in water. The physical, mathematical, and biological datasets establish latching mechanics with four temporal phases and identify a nondimensional performance metric to analyze potential energy transfer. These temporal phases enable control of an extreme cascade of mechanical power amplification. Linkage dynamics and temporal phase characteristics are easily adjusted through linkage design in robotic and mathematical systems and provide a framework to understand the function of linkages and latches in biological systems.


Subject(s)
Crustacea/physiology , Energy Transfer , Motor Activity/physiology , Animals , Biomechanical Phenomena , Humans , Models, Biological , Robotics
14.
ACS Nano ; 15(9): 14137-14148, 2021 09 28.
Article in English | MEDLINE | ID: mdl-34425674

ABSTRACT

The development of bioinspired switchable adhesive systems has promising solutions in various industrial/medical applications. Switchable and perceptive adhesion regardless of the shape or surface shape of the object is still challenging in dry and aquatic surroundings. We developed an electronic sensory soft adhesive device that recapitulates the attaching, mechanosensory, and decision-making capabilities of a soft adhesion actuator. The soft adhesion actuator of an artificial octopus sucker may precisely control its robust attachment against surfaces with various topologies in wet environments as well as a rapid detachment upon deflation. Carbon nanotube-based strain sensors are three-dimensionally coated onto the irregular surface of the artificial octopus sucker to mimic nerve-like functions of an octopus and identify objects via patterns of strain distribution. An integration with machine learning complements decision-making capabilities to predict the weight and center of gravity for samples with diverse shapes, sizes, and mechanical properties, and this function may be useful in turbid water or fragile environments, where it is difficult to utilize vision.


Subject(s)
Nanotubes, Carbon , Electronics
15.
Sensors (Basel) ; 21(6)2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33808860

ABSTRACT

As the safety of a human body is the main priority while interacting with robots, the field of tactile sensors has expanded for acquiring tactile information and ensuring safe human-robot interaction (HRI). Existing lightweight and thin tactile sensors exhibit high performance in detecting their surroundings. However, unexpected collisions caused by malfunctions or sudden external collisions can still cause injuries to rigid robots with thin tactile sensors. In this study, we present a sensitive balloon sensor for contact sensing and alleviating physical collisions over a large area of rigid robots. The balloon sensor is a pressure sensor composed of an inflatable body of low-density polyethylene (LDPE), and a highly sensitive and flexible strain sensor laminated onto it. The mechanical crack-based strain sensor with high sensitivity enables the detection of extremely small changes in the strain of the balloon. Adjusting the geometric parameters of the balloon allows for a large and easily customizable sensing area. The weight of the balloon sensor was approximately 2 g. The sensor is employed with a servo motor and detects a finger or a sheet of rolled paper gently touching it, without being damaged.


Subject(s)
Robotics , Aircraft , Fingers , Humans , Touch
16.
ACS Nano ; 14(9): 11906-11918, 2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32885947

ABSTRACT

Development of soft actuators with higher performance and more versatile controllability has been strongly required for further innovative advancement of various soft applications. Among various soft actuators, electrochemical actuators have attracted much attention due to their lightweight, simple device configuration, and facile low-voltage control. However, the reported performances have not been satisfactory because their working mechanism depends on the limited electrode expansion by conventional electrochemical reactions. Herein, we report an electroosmosis-driven hydrogel actuator with a fully soft monolithic structure-based whole-body actuation mechanism using an amphiphilic interaction-induced layer-by-layer assembly. For this study, cracked electrodes with interconnected metal nanoparticles are prepared on hydrogels through layer-by-layer assembly and shape transformation of metal nanoparticles at hydrophobic/hydrophilic solvent interfaces. Electroosmotic pumping by cracked electrodes instantaneously induces hydrogel swelling through reversible and substantial hydraulic flow. The resultant actuator exhibits actuation strain of higher than 20% and energy density of 1.06 × 105 J m-3, allowing various geometries (e.g., curved-planar and square-pillared structures) and motions (e.g., slow-relaxation, spring-out, and two degree of freedom bending). In particular, the energy density of our actuators shows about 10-fold improvement than those of skeletal muscle, electrochemical actuators, and various stimuli-responsive hydrogel actuators reported to date.

17.
Sensors (Basel) ; 19(24)2019 Dec 13.
Article in English | MEDLINE | ID: mdl-31847062

ABSTRACT

Measuring the foot plantar pressure has the potential to be an important tool in many areas such as enhancing sports performance, diagnosing diseases, and rehabilitation. In general, the plantar pressure sensor should have robustness, durability, and high repeatability, as it should measure the pressure due to body weight. Here, we present a novel insole foot plantar pressure sensor using a highly sensitive crack-based strain sensor. The sensor is made of elastomer, stainless steel, a crack-based sensor, and a 3D-printed frame. Insoles are made of elastomer with Shore A 40, which is used as part of the sensor, to distribute the load to the sensor. The 3D-printed frame and stainless steel prevent breakage of the crack-based sensor and enable elastic behavior. The sensor response is highly repeatable and shows excellent durability even after 20,000 cycles. We show that the insole pressure sensor can be used as a real-time monitoring system using the pressure visualization program.


Subject(s)
Foot Orthoses , Equipment Design , Gait/physiology , Humans , Models, Theoretical , Pressure , Printing, Three-Dimensional
18.
Materials (Basel) ; 12(9)2019 May 09.
Article in English | MEDLINE | ID: mdl-31075900

ABSTRACT

Among many flexible mechanosensors, a crack-based sensor inspired by a spider's slit organ has received considerable attention due to its great sensitivity compared to previous strain sensors. The sensor's limitation, however, lies on its vulnerability to stress concentration and the metal layers' delamination. To address this issue of vulnerability, we used fluorinated ethylene propylene (FEP) as an encapsulation layer on both sides of the sensor. The excellent waterproof and chemical resistance capability of FEP may effectively protect the sensor from damage in water and chemicals while improving the durability against friction.

19.
ACS Appl Mater Interfaces ; 11(14): 13608-13615, 2019 Apr 10.
Article in English | MEDLINE | ID: mdl-30868878

ABSTRACT

The human skin has inspired multimodal detection using smart devices or systems in fields including biomedical engineering, robotics, and artificial intelligence. Hairs of a high aspect ratio (AR) connected to follicles, in particular, detect subtle structural displacements by airflow or ultralight touch above the skin. Here, hairy skin electronics assembled with an array of graphene sensors (16 pixels) and artificial microhairs for multimodal detection of tactile stimuli and details of airflows (e.g., intensity, direction, and incident angle) are presented. Composed of percolation networks of graphene nanoplatelet sheets, the sensor array can simultaneously detect pressure, temperature, and vibration, all of which correspond to the sensing range of human tactile perceptions with ultrahigh response time (<0.5 ms, 2 kHz) for restoration. The device covered with microhairs (50 µm diameter and 300 µm height, AR = 6, hexagonal layout, and ∼4400/cm2) exhibits mapping of electrical signals induced by noncontact airflow and identifying the direction, incident angle, and intensity of wind to the sensor. For potential applications, we implement the hairy electronics to a sailing robot and demonstrate changes in locomotion and speed by detecting the direction and intensity of airflow.


Subject(s)
Graphite/chemistry , Hair/chemistry , Robotics , Skin/chemistry , Electronics , Humans , Pressure , Touch
20.
Materials (Basel) ; 11(11)2018 Nov 19.
Article in English | MEDLINE | ID: mdl-30463218

ABSTRACT

Performance of the shape memory alloy (SMA) coil spring actuator in cyclic actuation as an artificial muscle is strongly related to the mechanical design of the coil geometry. This paper proposes a practical design method for improving the frequency and efficiency of the SMA coil spring actuator; by designing the SMA coil spring to have large index (coil diameter/wire diameter) and pitch angle (LIP), cooling characteristics can be improved (increasing the actuation frequency) and large deformation can be obtained. The LIP design process is based on the two-state static model that describes the displacement-force relationship of the SMA coil spring in two states-a fully austenite phase and a fully martensite phase. The design process gives accurate design parameters of the SMA coil spring actuator that satisfy the required stroke and force. The model of the fully martensite phase of the SMA coil that includes the stress-induced detwinning enables the use of maximum shear strain of the SMA. The design method reduces the mass of an SMA without changing the stroke and increase the power density and efficiency. The cyclic actuation experiments demonstrate that the LIP design doubles the maximum frequency of SMA coil actuator with one-sixth the mass of the non-LIP design.

SELECTION OF CITATIONS
SEARCH DETAIL