Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters








Database
Language
Publication year range
1.
Sensors (Basel) ; 24(7)2024 Mar 24.
Article in English | MEDLINE | ID: mdl-38610278

ABSTRACT

Transient terahertz time-domain spectroscopy (THz-TDS) imaging has emerged as a novel non-ionizing and noninvasive biomedical imaging modality, designed for the detection and characterization of a variety of tissue malignancies due to their high signal-to-noise ratio and submillimeter resolution. We report our design of a pair of aspheric focusing lenses using a commercially available lens-design software that resulted in about 200 × 200-µm2 focal spot size corresponding to the 1-THz frequency. The lenses are made of high-density polyethylene (HDPE) obtained using a lathe fabrication and are integrated into a THz-TDS system that includes low-temperature GaAs photoconductive antennae as both a THz emitter and detector. The system is used to generate high-resolution, two-dimensional (2D) images of formalin-fixed, paraffin-embedded murine pancreas tissue blocks. The performance of these focusing lenses is compared to the older system based on a pair of short-focal-length, hemispherical polytetrafluoroethylene (TeflonTM) lenses and is characterized using THz-domain measurements, resulting in 2D maps of the tissue refractive index and absorption coefficient as imaging markers. For a quantitative evaluation of the lens effect on the image resolution, we formulated a lateral resolution parameter, R2080, defined as the distance required for a 20-80% transition of the imaging marker from the bare paraffin region to the tissue region in the same image frame. The R2080 parameter clearly demonstrates the advantage of the HDPE lenses over TeflonTM lenses. The lens-design approach presented here can be successfully implemented in other THz-TDS setups with known THz emitter and detector specifications.


Subject(s)
Lenses , Terahertz Imaging , Animals , Mice , Polyethylene , Polytetrafluoroethylene , Cold Temperature
2.
ACS Omega ; 8(11): 9925-9933, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36969433

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is one of the significant reasons for cancer-related death in the United States due to a lack of timely prognosis and the poor efficacy of the standard treatment protocol. Immunotherapy-based neoadjuvant therapy, such as stereotactic body radiotherapy (SBRT), has shown promising results compared to conventional radiotherapy in strengthening the antitumor response in PDAC. To probe and quantify the antitumor response with SBRT, we propose to study the tumor microenvironment using terahertz time-domain spectroscopy (THz-TDS). Since the tumor's complex microenvironment plays a key role in disease progression and treatment supervision, THz-TDS can be a revolutionary tool to help in treatment planning by probing the changes in the tissue microenvironment. This paper presents THz-TDS of paraffin-embedded PDAC samples utilizing a clinically relevant genetically engineered mouse model. This Article aims to develop and validate a novel time-domain approximation method based on maximum a posteriori probability (MAP) estimation to extract terahertz parameters, namely, the refractive index and the absorption coefficient, from THz-TDS. Unlike the standard frequency-domain (FD) analysis, the parameters extracted from MAP construct better-conserved tissue parameters estimates, since the FD optimization often incorporates errors due to numerical instabilities during phase unwrapping, especially when propagating in lossy media. The THz-range index of refraction extracted from MAP and absorption coefficient parameters report a statistically significant distinction between PDAC tissue regions and their healthy equivalents. The coefficient of variation of the refractive index extracted by MAP is one order of magnitude lower compared to the one extracted from FD analysis. The index of refraction and absorption coefficient extracted from the MAP are suggested as the best imaging markers to reconstruct THz images of biological tissues to reflect their physical properties accurately and reproducibly. The obtained THz scans were validated using standard histopathology.

3.
Biosensors (Basel) ; 9(1)2019 Feb 28.
Article in English | MEDLINE | ID: mdl-30823455

ABSTRACT

We registered surface enhanced Raman scattering (SERS) spectra of the human lactoferrin molecules adsorbed on a silvered porous silicon (por-Si) from 10-6⁻10-18 M solutions. It was found that the por-Si template causes a negative surface potential of silver particles and their chemical resistivity to oxidation. These properties provided to attract positively charged lactoferrin molecules and prevent their interaction with metallic particles upon 473 nm laser excitation. The SERS spectra of lactoferrin adsorbed from 10-6 M solution were rather weak but a decrease of the concentration to 10-10 M led to an enormous growth of the SERS signal. This effect took place as oligomers of lactoferrin were broken down to monomeric units while its concentration was reduced. Oligomers are too large for a uniform overlap with electromagnetic field from silver particles. They cannot provide an intensive SERS signal from the top part of the molecules in contrast to monomers that can be completely covered by the electromagnetic field. The SERS spectra of lactoferrin at the 10-14 and 10-16 M concentrations were less intensive and started to change due to increasing contribution from the laser burned molecules. To prevent overheating the analyte molecules on the silvered por-Si were protected with graphene, which allowed the detection of lactoferrin adsorbed from the 10-18 M solution.


Subject(s)
Biosensing Techniques , Graphite/chemistry , Lactoferrin/isolation & purification , Spectrum Analysis, Raman/methods , Humans , Lactoferrin/chemistry , Porosity , Silicon/chemistry , Silver/chemistry , Surface Properties
4.
Beilstein J Nanotechnol ; 8: 145-158, 2017.
Article in English | MEDLINE | ID: mdl-28243551

ABSTRACT

We present Raman studies of graphene films grown on copper foil by atmospheric pressure CVD with n-decane as a precursor, a mixture of nitrogen and hydrogen as the carrier gas, under different hydrogen flow rates. A novel approach for the processing of the Raman spectroscopy data was employed. It was found that in particular cases, the various parameters of the Raman spectra can be assigned to fractions of the films with different thicknesses. In particular, such quantities as the full width at half maximum of the 2D peak and the position of the 2D graphene band were successfully applied for the elaborated approach. Both the G- and 2D-band positions of single layer fractions were blue-shifted, which could be associated with the nitrogen doping of studied films. The XPS study revealed the characteristics of incorporated nitrogen, which was found to have a binding energy around 402 eV. Moreover, based on the statistical analysis of spectral parameters and the observation of a G-resonance, the twisted nature of the double-layer fraction of graphene grown with a lower hydrogen feeding rate was demonstrated. The impact of the varied hydrogen flow rate on the structural properties of graphene and the nitrogen concentration is also discussed.

5.
Nanoscale Res Lett ; 7: 102, 2012 Feb 02.
Article in English | MEDLINE | ID: mdl-22300375

ABSTRACT

Few-wall carbon nanotubes were synthesized by methane/acetylene decomposition over bimetallic Fe-Mo catalyst with MgO (1:8:40) support at the temperature of 900°C. No calcinations and reduction pretreatments were applied to the catalytic powder. The transmission electron microscopy investigation showed that the synthesized carbon nanotubes [CNTs] have high purity and narrow diameter distribution. Raman spectrum showed that the ratio of G to D band line intensities of IG/ID is approximately 10, and the peaks in the low frequency range were attributed to the radial breathing mode corresponding to the nanotubes of small diameters. Thermogravimetric analysis data indicated no amorphous carbon phases. Experiments conducted at higher gas pressures showed the increase of CNT yield up to 83%. Mössbauer spectroscopy, magnetization measurements, X-ray diffraction, high-resolution transmission electron microscopy, and electron diffraction were employed to evaluate the nature of catalyst particles.

SELECTION OF CITATIONS
SEARCH DETAIL