Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
Polymers (Basel) ; 14(20)2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36297968

ABSTRACT

This study investigated the influence of viscose fibre (VF) geometry on the microstructures and resulting properties of high-density polyethylene (HDPE) composites. Seven types of viscose fibres varying in cross-section shape, linear density, and length were pelletised, compounded into HDPE with a twin-screw extruder, and injection moulded. The microstructures of the composites were characterised by investigating their cross-sections and by extracting the fibres and measuring their lengths using optical microscopy (OM). The mechanical and thermal properties of the composites were characterised using differential scanning calorimetry (DSC), tensile tests, Charpy impact tests, and dynamic mechanical analysis (DMA). The composites prepared using cylindrical fibres with a linear density of 1.7 dtex exhibited the best fibre dispersion, highest orientation, and lowest fibre-fibre contact area. The decrease in the linear density of the cylindrical fibres resulted in increasingly worse dispersion and orientation, while composites containing non-cylindrical fibres exhibited a comparably larger fibre-fibre contact area. The initial fibre length of about 3 to 10 mm decreased to the mean values of 0.29 mm to 0.41 mm during processing, depending on the initial geometry. In general, cylindrical fibres exhibited a superior reinforcing effect in comparison to non-cylindrical fibres. The composites containing cylindrical fibres with a linear density of 1.7 dtex and a length of 5 mm exhibited the best reinforcing effect with an increase in tensile modulus and strength of 323% and 141%, respectively.

2.
J Chem Educ ; 98(5): 1776-1782, 2021 May 11.
Article in English | MEDLINE | ID: mdl-34083841

ABSTRACT

Chemical engineering education comprises a complexity of technical skills that include learning processes that are currently relevant in industry. Despite being a rather old industrial process, the manufacturing of viscose fibers still accounts for the major fraction of all human-made cellulosic fibers worldwide. Here we describe a laboratory setup to introduce chemistry and engineering students into the principles of cellulose fiber spinning according to the viscose process. The setup for fiber spinning is kept simplistic and allows the experiments to be performed without professional spinning equipment. However, all of the steps are performed analogously to the industrial process. The professional setting in process and chemical engineering involves work on projects and in teams. Hence, we have incorporated the fiber spinning laboratory experiment in the context of working in teams on projects. We will also present our experience on transferring a real-life laboratory experiment online, as this is required at times that online education is preferred over real-life teaching.

SELECTION OF CITATIONS
SEARCH DETAIL