Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Main subject
Language
Publication year range
1.
Int J Mol Sci ; 24(19)2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37834359

ABSTRACT

In this work, the size transformation of the TiO2 nanofraction from pharmaceutical grade E171 powder was studied during its transit through the gastrointestinal tract (GIT). It was shown that pharmaceutical-grade TiO2 powder contained about 0.68% (w/w) of particles smaller than 240 nm in diameter. In the observed GIT transit process the TiO2 nanoparticles were agglomerated up to 150-200 nm in simulated salivary fluid, with gradual agglomerate enlargement up to 300-600 nm and more than 1 micron in simulated gastric fluid. In the intestinal fluid the reverse process occurred, involving a decrease of agglomerates accompanied by the formation of a small fraction with ~50 nm average size. This fraction can be further involved in the histohematic transport process. The acidity degree (pH) and mineral composition of solutions, as well as the transit speed along the gastrointestinal tract, influence the nature of the particle transformation significantly. The rapid passing between the gastrointestinal tract sections creates conditions for a decrease in part of the TiO2 particles, up to 100 nm, and may be associated with the violation of the structural and functional integrity of the intestinal mucus layer.


Subject(s)
Nanoparticles , Powders , Particle Size , Nanoparticles/chemistry , Gastrointestinal Tract , Titanium/chemistry
2.
Opt Express ; 26(23): 30324-30337, 2018 Nov 12.
Article in English | MEDLINE | ID: mdl-30469907

ABSTRACT

We report results of experimental studies of the photoabsorption, photoluminescent and photoelectric properties of a new type of multilayer molecular nanocrystals, consisting of highly ordered J-aggregates of one anionic and two cationic J-aggregates of cyanine dyes. In contrast to conventional J-aggregated dyes the multichromic nanocrystals synthesized in this work, are capable of efficient light absorption in three excitonic bands of the visible and near-IR spectral ranges. The spectral peak positions in the absorption bands can be controlled by appropriately selecting a set of dyes a molecular crystal is made of. Our investigations of the photoelectric properties of multichromic crystals have shown that each of them can potentially be used as a photosensitive layer of a photocell with photoconductivity in three peaks of excitonic absorption. The synthesized nanocrystals are attractive for the creation of thin-film organic photodetectors with a large photosensitive area and varied photoabsorption spectra, excitonic waveguides and for some other applications in organic and hybrid photonics and optoelectronics.

SELECTION OF CITATIONS
SEARCH DETAIL