Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
J Environ Manage ; 345: 118859, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37647730

ABSTRACT

Salvia miltiorrhiza is an important traditional Chinese medicinal and edible plant that can easily accumulate excessive cadmium (Cd) and lead (Pb) from contaminated soils. The soil contaminated with heavy metals severely threatened the quality of S. miltiorrhiza products. In this study, we investigated the effects of mercapto-based palygorskite (MPAL), a new passivation amendment, on restraining the uptake of Cd and Pb by S. miltiorrhiza, and the impact on soil micro-ecology. Results showed that the application of MPAL prominently enhanced the biomass and antioxidant enzyme activities of S. miltiorrhiza. With the treatment of 4% MPAL, the Cd and Pb contents in the roots were significantly decreased by 81.42% and 69.09%, respectively. The active ingredients of S. miltiorrhiza, including Danshensu, Cryptotanshinone, Tanshinone I and Tanshinone II were remarkedly increased by 1899.46%, 5838.64%, 54.23% and 200.78%, respectively. In addition, MPAL decreased the bio-availability of Cd and Pb by speciation transformation, which simultaneously boosted the activities of cellulase and sucrase. The application of MPAL also improved the bacterial community composition. These findings revealed that the application of MPAL regulated the soil micro-ecology, positively modified the growth and obstructed the Cd and Pb accumulation in S. miltiorrhiza.


Subject(s)
Metals, Heavy , Salvia miltiorrhiza , Cadmium , Lead , Ecology
2.
Environ Pollut ; 306: 119400, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35525516

ABSTRACT

The interaction of cadmium (Cd) pollution and acid rain stress has seriously threatened soil ecosystem and human health. However, there are still few effective amendments for the in-situ remediation in the Cd-contaminated acidified soil. In this study, the performance and mechanisms of palygorskite (PAL) and mercapto-functionalized PAL (MPAL) on Cd immobilization were investigated, and the stability as well as effects on soil micro-ecology under stimulated acid rain were also explored. Results showed that MPAL could react with Cd to form stable Cd-sulfhydryl and Cd-O complexes. The reduction of bioavailable Cd by MPAL was 121.19-164.86% higher than that by PAL. Notably, the Cd immobilization by MPAL remained stable within 90 days in which the concentrations of HOAc-extractable Cd were reduced by 18.28-25.12%, while the reducible and residual fractions were increased by 9.26-18.53% and 54.16%-479.01%, respectively. The sequential acid rain leaching demonstrated that soil after MPAL treatments had a strong H+ resistance, and the immobilized Cd showed prominent stability. In addition, activities of acid phosphatase, catalase and invertase in MPAL treated soil were significantly enhanced by 34.60%, 22.09% and 48.87%, respectively. After MPAL application, bacterial diversity was further improved with diversified sulfur metabolism biomarkers. The decreased abundance of Cd resistance genes including cadA, cadC, czcA, czcB, czcR and zipA also indicated that soil micro-ecology was improved by MPAL. These results showed that MPAL was an effective and eco-friendly amendment for the immobilization of Cd in contaminated soil.


Subject(s)
Acid Rain , Soil Pollutants , Cadmium/analysis , Ecosystem , Humans , Magnesium Compounds , Silicon Compounds , Soil , Soil Pollutants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL