Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters








Database
Language
Publication year range
1.
Sci Total Environ ; 927: 172204, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38580128

ABSTRACT

Agriculture stands as a thriving enterprise in India, serving as both the bedrock of economy and vital source of nutrition. In response to the escalating demands for high-quality food for swiftly expanding population, agricultural endeavors are extending their reach into the elevated terrains of the Himalayas, tapping into abundant resources for bolstering food production. Nonetheless, these Himalayan agro-ecosystems encounter persistent challenges, leading to crop losses. These challenges stem from a combination of factors including prevailing frigid temperatures, suboptimal farming practices, unpredictable climatic shifts, subdivided land ownership, and limited resources. While the utilization of chemical fertilizers has been embraced to enhance the quality of food output, genuine concerns have arisen due to the potential hazards they pose. Consequently, the present investigation was initiated with the objective of formulating environmentally friendly and cold-tolerant broad ranged bioinoculants tailored to enhance the production of Kidney bean while concurrently enriching its nutrient content across entire hilly regions. The outcomes of this study unveiled noteworthy advancements in kidney bean yield, registering a substantial increase ranging from 12.51 ± 2.39 % to 14.15 ± 0.83 % in regions of lower elevation (Jeolikote) and an even more remarkable surge ranging from 20.60 ± 3.03 % to 29.97 ± 5.02 % in higher elevated areas (Chakrata) compared to the control group. Furthermore, these cold-tolerant bioinoculants exhibited a dual advantage by fostering the enhancement of essential nutrients within the grains and fostering a positive influence on the diversity and abundance of microbial life in the rhizosphere. As a result, to effectively tackle the issues associated with chemical fertilizers and to achieve sustainable improvements in both the yield and nutrient composition of kidney bean across varying elevations, the adoption of cold-tolerant Enterobacter hormaechei CHM16, and Pantoea agglomerans HRM 23, including the consortium, presents a promising avenue. Additionally, this study has contributed significant insights-into the role of organic acids like oxalic acid in the solubilization of nutrients, thereby expanding the existing knowledge in this specialized field.


Subject(s)
Biofortification , Cold Temperature , Rhizosphere , India , Phaseolus/physiology , Agriculture/methods , Altitude , Soil Microbiology , Crops, Agricultural
2.
BMC Plant Biol ; 21(1): 519, 2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34749648

ABSTRACT

BACKGROUND: Since the World's population is increasing, it's critical to boost agricultural productivity to meet the rising demand for food and reduce poverty. Fertilizers are widely used in traditional agricultural methods to improve crop yield, but they have a number of negative environmental consequences such as nutrient losses, decrease fertility and polluted water and air. Researchers have been focusing on alternative crop fertilizers mechanisms to address these issues in recent years and nanobiofertilizers have frequently been suggested. "Nanophos" is a biofertilizer and contains phosphate-solubilising bacteria that solubilises insoluble phosphate and makes it available to the plants for improved growth and productivity as well as maintain soil health. This study evaluated the impact of nanophos on the growth and development of maize plants and its rhizospheric microbial community such as NPK solubilising microbes, soil enzyme activities and soil protein under field condition after 20, 40 and 60 days in randomized block design. RESULTS: Maize seeds treated with nanophos showed improvement in germination of seeds, plant height, number of leaves, photosynthetic pigments, total sugar and protein level over control. A higher activity of phenol, flavonoid, antioxidant activities and yield were noticed in nanophos treated plants over control. Positive shift in total bacterial count, nitrogen fixing bacteria, phosphate and potassium solubilizers were observed in the presence of nanophos as compared to control. Soil enzyme activities were significantly (P < 0.05) improved in treated soil and showed moderately correlation between treatments estimated using Spearman rank correlation test. Real time PCR and total soil protein content analysis showed enhanced microbial population in nanophos treated soil. Obtained results showed that nanophos improved the soil microbial population and thus improved the plant growth and productivity. CONCLUSION: The study concluded a stimulating effect of nanophos on Zea mays health and productivity and indicates good response towards total bacterial, NPK solubilising bacteria, soil enzymes, soil protein which equally showed positive response towards soil nutrient status. It can be a potential way to boost soil nutrient use efficiency and can be a better alternative to fertilizers used in the agriculture.


Subject(s)
Agriculture/methods , Soil Microbiology , Crop Production , Microbiota , Soil
3.
3 Biotech ; 11(5): 237, 2021 May.
Article in English | MEDLINE | ID: mdl-33968580

ABSTRACT

The role of plant growth-promoting rhizobacteria along with nanochitosan on maize productivity remains unexplored. In the present study we report the effect of nanochitosan and PGPR on growth, productivity and mechanism(s) involved in defence response in Zea mays under field conditions. Application of nanochitosan (50 mg L-1) along with plant growth-promoting rhizobacteria enhanced seed germination, plant height, root length, leaf area, fresh and dry weight of shoot and root, chlorophyll, carotenoids, total sugar and protein content upto 1.5-2 fold over control in maize after 60 days of the field experiment. Treated maize plants also showed enhanced level of defence-related biomolecules like phenolic compounds (103%), catalase (60.09%), peroxidase (81.57%) and superoxide dismutase (76.50%) over control. Level of phenols and sugar content in maize plants enhanced which was analysed by GC-MS (Gas chromatography-mass spectrometry). Significant increase in cob length, cob weight/plot, grain yield/plot and 100 grain weight was observed in treated maize plants over control. As per the results, the combination of nanochitosan and plant growth-promoting rhizobacteria was reported to improve the health and yield of maize. The interaction can be further studied in field trials for improvement in agriculture production. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02790-z.

4.
3 Biotech ; 11(1): 11, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33442510

ABSTRACT

Bio-inoculants play an important role for sustainable agriculture. Application of nanocompounds in the agriculture sector provides strength and is reported to enhance crop production but the combined effect of nanocompounds and plant growth-promoting rhizobacteria on plants has not been studied much. Therefore, the present study was planned to observe the effect of two plant growth promotory Bacillus spp. along with nanozeolite on maize under field conditions using a randomized block design. Combined treatment of nanozeolite and bio-inoculants promoted plant height, root length, fresh and dry weight of shoot and root, chlorophyll, carotenoids, total sugar, protein and phenol contents in maize significantly over control. Enhanced level of catalase, peroxidase, superoxide dismutase, phenols, alcohols and acid-esters in treated plants over control showed their role in stress management. An increase of 29.80% in maize productivity over control was reported in the combined treatment of Bacillus sp. and nanozeolite. Our results indicate that the application of bio-inoculants with nanozeolite showed a positive response on the health and productivity of maize plants. Hence, these may be used to enhance the productivity of different crops. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-020-02561-2.

5.
3 Biotech ; 8(3): 141, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29484280

ABSTRACT

Plant growth promoting rhizobacteria are key to soil and plant health maintenance. In the present study, two PGPR strains which were identified as Bacillus spp. (accession number KX650178 and KX650179) with nanozeolite (50 ppm) were applied to the seeds in different combinations and tested on growth profile of maize crop. Various growth related parameters, including plant height, leaf area, number of leaves chlorophyll and total protein were positively increased up to twofold by the nanocompound treatment. GC-MS results reveal increase in total phenolic and acid ester compounds after the treatment of nanozeolite and PGPR, which are responsible for stress tolerance mechanism. Soil physicochemical parameters (organic carbon, phosphorous, potassium, ammoniacal nitrogen and nitrate nitrogen) were assessed qualitatively and a shift towards higher amount was observed. Various biochemical parameters of soil health like dehydrogenase, fluorescein diacetate hydrolysis and alkaline phosphatase activity were significantly enhanced up to threefold with the application of different treatments. The results, for the first time, demonstrate successful use of nanozeolite in enhancing growth of Zea mays, under controlled conditions and present a viable alternative to GM crop for ensuring food security.

SELECTION OF CITATIONS
SEARCH DETAIL