Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 198
Filter
1.
Int J Mol Sci ; 25(19)2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39408710

ABSTRACT

During the COVID-19 pandemic, diabetic and obese patients experienced higher rates of hospital admissions, severe illness, and mortality. However, vaccinations failed to provide those vulnerable populations the same level of protection against COVID-19 severity as those without diabetic and obese phenotypes. Our study aimed to investigate how diabetes mellitus (DM) impacts the immune response following vaccination including the artificially designed trimeric SARS-CoV-2 spike (S)-protein. By using two diabetic mouse models, ob/ob mice (obese, hyperglycemic, and insulin-resistant) and STZ-treated mice (insulin-deficient and hyperglycemic), we observed a significant reduction in S-protein-specific IgG antibody titer post-vaccination in both diabetic models compared to wild-type (WT) mice. Both diabetic mouse models exhibited significant abnormalities in spleen tissue, including marked reductions in splenic weight and the size of the white pulp regions. Furthermore, the splenic T-cell and B-cell zones were notably diminished, suggesting an underlying immune dysfunction that could contribute to impaired antibody production. Notably, vaccination with the S-protein, when paired with an optimal adjuvant, did not exacerbate diabetic cardiomyopathy, blood glucose levels, or liver function, providing reassurance about the vaccine's safety. These findings offer valuable insights into potential mechanisms responsible for the decreased persistence of antibody production in diabetic patients.


Subject(s)
Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Diabetes Mellitus, Experimental , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Spleen , Animals , Mice , COVID-19 Vaccines/immunology , Spleen/immunology , COVID-19/immunology , COVID-19/prevention & control , Spike Glycoprotein, Coronavirus/immunology , SARS-CoV-2/immunology , Diabetes Mellitus, Experimental/immunology , Antibodies, Viral/immunology , Immunoglobulin G/immunology , Immunoglobulin G/blood , Humans , Antibody Formation/immunology , Male , Mice, Inbred C57BL , Mice, Obese
2.
Clin Immunol ; 268: 110370, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39349153

ABSTRACT

Bisphenol A (BPA) is widely used in manufacturing plastic products, and it has been reported that exposure through the airway or orally aggravates allergic airway inflammation. Because BPA is detected in the atmosphere and indoor environments, the eyes can also be exposed to BPA. After ocular exposure to BPA and antigen via eye drops, we observed enhanced antigen uptake of antigen-presenting cells (APCs) in tear duct-associated lymphoid tissue (TALT). Additionally, we observed the formation of germinal center (GC) B cells in TALT and induction of allergic airway inflammation in mice sensitized with BPA and antigen via eye drops, followed by airway antigen exposure. We also found that DNAX-activating protein of 12 kDa (DAP12)-deficient mice displayed impaired activation of APCs enhanced by ocular exposure to BPA. These results indicate that ocular sensitization to BPA and allergen triggers allergic inflammation via TALT activation, and that DAP12 might be a key molecule for modulating the ocular immune system.

3.
Appl Environ Microbiol ; : e0119724, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39240119

ABSTRACT

Some strains of lactic acid bacteria can regulate the host's intestinal immune system. Bacterial cells and membrane vesicles (MVs) of Limosilactobacillus antri JCM 15950T promote immunoglobulin A (IgA) production in murine Peyer's patch cells via toll-like receptor (TLR) 2. This study aimed to investigate the role of lipoteichoic acid (LTA), a ligand of TLR2, in the immunostimulatory activity of these bacterial cells and their MVs. LTA extracted from bacterial cells was purified through hydrophobic interaction chromatography and then divided into fractions LTA1 and LTA2 through anion-exchange chromatography. LTA1 induced greater interleukin (IL)-6 production from macrophage-like RAW264 cells than LTA2, and the induced IL-6 production was suppressed by TLR2 neutralization using an anti-TLR2 antibody. The LTAs in both fractions contained two hexose residues in the glycolipid anchor; however, LTA1 was particularly rich in triacyl LTA. The free hydroxy groups in the glycerol phosphate (GroP) repeating units were substituted by d-alanine (d-Ala) and α-glucose in LTA1, but only by α-glucose in LTA2. The dealanylation of LTA1 slightly suppressed IL-6 production in RAW264 cells, whereas deacylation almost completely suppressed IL-6 production. Furthermore, IL-6 production induced by dealanylated LTA1 was markedly higher than that induced by dealanylated LTA2. These results indicated that the critical moieties for the immunostimulatory activity of L. antri-derived LTA were the three fatty acid residues rather than the substitution with d-Ala in GroP. LTA was also detected in MVs, suggesting that the triacyl LTA, but not the diacyl LTA, translocated to the MVs and conferred immunostimulatory activity. IMPORTANCE: Some lactic acid bacteria activate the host intestinal immune system via toll-like receptor (TLR) 2. Lipoteichoic acid (LTA) is a TLR2 ligand; however, the moieties of LTA that determine its immunostimulatory activity remain unclear because of the wide diversity of LTA partial structures. We found that Limosilactobacillus antri JCM 15950T has three types of LTAs (triacyl, diacyl, and monoacyl LTAs). Specifically, structural analysis of the LTAs revealed that triacyl LTA plays a crucial role in immunostimulation and that the fatty acid residues are essential for the activity. The three acyl residues are characteristic of LTAs from many lactic acid bacteria, and our findings can explain the immunostimulatory mechanisms widely exhibited by lactic acid bacteria. Furthermore, the immunostimulatory activity of membrane vesicles released by L. antri JCM 15950T is due to the transferred LTA, demonstrating a novel mechanism of membrane vesicle-mediated immunostimulation.

4.
Pancreatology ; 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39256134

ABSTRACT

BACKGROUND: The incidence of pancreatic cancer is on the rise, and its prognosis remains poor. Recent reports have established a link between the gut and oral microbiome and pancreatic cancer. However, the intricacies of this association within the Japanese population remain unclear. In this study, we investigated the gut and oral microbiomes of Japanese patients with pancreatic cancer, comparing them with those of healthy individuals. METHODS: We recruited 30 patients with untreated pancreatic cancer and 18 healthy controls at Kyoto University Hospital (2018-2022). We performed a comprehensive 16S rRNA gene sequencing to analyze their gut and oral microbiomes. RESULTS: Analysis revealed that the diversity of the gut and oral microbiomes of patients with pancreatic cancer was reduced compared to that of the healthy controls. Specifically, we observed an increase in the genus Streptococcus in both the gut and oral microbiomes and a significant decrease in several butyrate-producing bacteria in fecal samples. Moreover, bacteria such as Streptococcus mitis and Holdemanella biformis were present in pancreatic cancer tissues, suggesting that they might influence the carcinogenesis and progression of pancreatic cancer. CONCLUSIONS: The gut and oral microbiome differed between patients with pancreatic cancer and healthy controls, with a notable decrease in butyrate-producing bacteria in the gut microbiome of the patients. This suggests that there may be a distinct microbial signature associated with pancreatic cancer in the Japanese population. Further studies are required to elucidate the microbiome's causal role in this cancer and help develop prognostic markers or targeted therapies.

5.
Cell Rep ; 43(10): 114752, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39298315

ABSTRACT

The gut microbiota influences physiological functions of the host, ranging from the maintenance of local gut homeostasis to systemic immunity and metabolism. Secreted phospholipase A2 group X (sPLA2-X) is abundantly expressed in colonic epithelial cells but is barely detectable in metabolic and immune tissues. Despite this distribution, sPLA2-X-deficient (Pla2g10-/-) mice displayed variable obesity-related phenotypes that were abrogated after treatment with antibiotics or cohousing with Pla2g10+/+ mice, suggesting the involvement of the gut microbiota. Under housing conditions where Pla2g10-/- mice showed aggravation of diet-induced obesity and insulin resistance, they displayed increased colonic inflammation and epithelial damage, reduced production of polyunsaturated fatty acids (PUFAs) and lysophospholipids, decreased abundance of several Clostridium species, and reduced levels of short-chain fatty acids (SCFAs). These obesity-related phenotypes in Pla2g10-/- mice were reversed by dietary supplementation with ω3 PUFAs or SCFAs. Thus, colonic sPLA2-X orchestrates ω3 PUFA-SCFA interplay via modulation of the gut microbiota, thereby secondarily affecting systemic metabolism.

6.
Int J Med Mushrooms ; 26(10): 1-8, 2024.
Article in English | MEDLINE | ID: mdl-39171627

ABSTRACT

Mucosal vaccination is a promising strategy for combating infectious diseases caused by pathogenic microbes, as it can generate antigen-specific immune responses in both systemic and mucosal compartments. In our recent study, we developed a nasal vaccine system for Streptococcus pneumoniae infections in mice using enzymatically polymerized polyphenols such as caffeic acid. However, the efficacy of this mucosal vaccine system is approximately 70%, indicating a need for improvement. To address this issue, we hypothesized that incorporating a mucoadhesive agent that enhances mucosal absorption into a polyphenol-based mucosal vaccine system would improve vaccine efficacy. Contrary to our expectations, we found that adding a mucoadhesive agent, hydrophobically modified hydroxypropylmethylcellulose, to the vaccine system reduced the stimulation of antigen-specific antibody responses in both the mucosal (more than 90% reduction; P < 0.05) and systemic compartments (more than 80% reduction; P < 0.05). Although the addition of the mucoadhesive agent may have interfered with the interaction between the mucosal epithelium and the vaccine system, the underlying mechanism remains unclear, and further research is needed to fully understand the mechanisms involved.


Subject(s)
Administration, Intranasal , Caffeic Acids , Animals , Caffeic Acids/administration & dosage , Caffeic Acids/pharmacology , Mice , Mice, Inbred BALB C , Female , Immunity, Mucosal/drug effects , Antibody Formation/drug effects , Pneumococcal Infections/prevention & control , Pneumococcal Infections/immunology , Streptococcus pneumoniae/immunology
7.
Front Microbiol ; 15: 1415893, 2024.
Article in English | MEDLINE | ID: mdl-39015740

ABSTRACT

Introduction: Campylobacter spp. are a public health concern, yet there is still no effective vaccine or medicine available. Methods: Here, we developed a Campylobacter jejuni-specific antibody and found that it targeted a menaquinol cytochrome c reductase complex QcrC. Results: The antibody was specifically reactive to multiple C. jejuni strains including clinical isolates from patients with acute enteritis and was found to inhibit the energy metabolism and growth of C. jejuni. Different culture conditions produced different expression levels of QcrC in C. jejuni, and these levels were closely related not only to the energy metabolism of C. jejuni but also its pathogenicity. Furthermore, immunization of mice with recombinant QcrC induced protective immunity against C. jejuni infection. Discussion: Taken together, our present findings highlight a possible antibody- or vaccination-based strategy to prevent or control Campylobacter infection by targeting the QcrC-mediated metabolic pathway.

8.
Gut ; 73(11): 1799-1815, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-38926079

ABSTRACT

OBJECTIVE: Food addiction is a multifactorial disorder characterised by a loss of control over food intake that may promote obesity and alter gut microbiota composition. We have investigated the potential involvement of the gut microbiota in the mechanisms underlying food addiction. DESIGN: We used the Yale Food Addiction Scale (YFAS) 2.0 criteria to classify extreme food addiction in mouse and human subpopulations to identify gut microbiota signatures associated with vulnerability to this disorder. RESULTS: Both animal and human cohorts showed important similarities in the gut microbiota signatures linked to food addiction. The signatures suggested possible non-beneficial effects of bacteria belonging to the Proteobacteria phylum and potential protective effects of Actinobacteria against the development of food addiction in both cohorts of humans and mice. A decreased relative abundance of the species Blautia wexlerae was observed in addicted humans and of Blautia genus in addicted mice. Administration of the non-digestible carbohydrates, lactulose and rhamnose, known to favour Blautia growth, led to increased relative abundance of Blautia in mice faeces in parallel with dramatic improvements in food addiction. A similar improvement was revealed after oral administration of Blautia wexlerae as a beneficial microbe. CONCLUSION: By understanding the crosstalk between this behavioural alteration and gut microbiota, these findings constitute a step forward to future treatments for food addiction and related eating disorders.


Subject(s)
Food Addiction , Gastrointestinal Microbiome , Animals , Gastrointestinal Microbiome/physiology , Mice , Humans , Food Addiction/microbiology , Male , Female , Adult , Feces/microbiology , Mice, Inbred C57BL
9.
Physiol Rep ; 12(12): e16100, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38888088

ABSTRACT

This study investigated the effects of white meat, such as chicken, intake combined with resistance training on muscle mass and strength in the elderly women, and whether the underlying mechanism involves changes in the gut microbiota. Ninety-three volunteers (age 59-79 years) were randomly allocated to sedentary control with placebo (Sed + PL) or chicken meat (Sed + HP) and resistance training with placebo (RT + PL) or chicken meat (RT + HP). Resistance training sessions were performed 3 d/week for 12 weeks using leg extensions and curls. Boiled chicken meat (110 g, containing 22.5 g protein) was ingested 3 d/week for 12 weeks. Maximal muscle strength and whole-body lean mass increased significantly in the RT + PL group compared to the Sed + HP group, and the RT + HP group showed a significantly greater increase than the Sed + HP and RT + PL groups. Additionally, the gut microbiota composition did not change before or after the interventions in any of the four groups. Moreover, the individual comparison of gut bacteria using false discovery rate-based statistical analysis showed no alterations before or after the interventions in the four groups. Resistance training combined with chicken meat intake may effective have increased muscle mass and strength without drastically modifying the gut microbiota composition in elderly women.


Subject(s)
Chickens , Gastrointestinal Microbiome , Meat , Muscle Strength , Muscle, Skeletal , Resistance Training , Humans , Female , Gastrointestinal Microbiome/physiology , Resistance Training/methods , Aged , Muscle Strength/physiology , Middle Aged , Animals , Muscle, Skeletal/physiology
10.
Front Cell Infect Microbiol ; 14: 1355679, 2024.
Article in English | MEDLINE | ID: mdl-38841110

ABSTRACT

Intestinal bacteria metabolize dietary substances to produce bioactive postbiotics, among which some are recognized for their role in promoting host health. We here explored the postbiotic potential of two omega-3 α-linolenic acid-derived metabolites: trans-10-cis-15-octadecadienoic acid (t10,c15-18:2) and cis-9-cis-15-octadecadienoic acid (c9,c15-18:2). Dietary intake of lipids rich in omega-3 α-linolenic acid elevated levels of t10,c15-18:2 and c9,c15-18:2 in the serum and feces of mice, an effect dependent on the presence of intestinal bacteria. Notably, t10,c15-18:2 mitigated skin inflammation in mice that became hypersensitive after exposure to 2,4-dinitrofluorobenzene, an experimental model for allergic contact dermatitis. In particular, t10,c15-18:2-but not c9,c15-18:2-attenuated ear swelling and edema, characteristic symptoms of contact hypersensitivity. The anti-inflammatory effects of t10,c15-18:2 were due to its ability to suppress the release of vascular endothelial growth factor A from keratinocytes, thereby mitigating the enhanced vascular permeability induced by hapten stimulation. Our study identified retinoid X receptor as a functional receptor that mediates the downregulation of skin inflammation upon treatment with t10,c15-18:2. Our results suggest that t10,c15-18:2 holds promise as an omega-3 fatty acid-derived postbiotic with potential therapeutic implications for alleviating the skin edema seen in allergic contact dermatitis-induced inflammation.


Subject(s)
Disease Models, Animal , Down-Regulation , Fatty Acids, Omega-3 , Vascular Endothelial Growth Factor A , Animals , Mice , Vascular Endothelial Growth Factor A/metabolism , Fatty Acids, Omega-3/metabolism , Fatty Acids, Omega-3/pharmacology , Dermatitis, Contact/metabolism , Dinitrofluorobenzene , Skin/metabolism , Skin/pathology , Keratinocytes/metabolism , Keratinocytes/drug effects , Female , Dermatitis, Allergic Contact/metabolism , Humans , Gastrointestinal Microbiome/drug effects , Feces/chemistry , Feces/microbiology
11.
Vaccines (Basel) ; 12(5)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38793700

ABSTRACT

The development of mucosal vaccines, which can generate antigen-specific immune responses in both the systemic and mucosal compartments, has been recognized as an effective strategy for combating infectious diseases caused by pathogenic microbes. Our recent research has focused on creating a nasal vaccine system in mice using enzymatically polymerized caffeic acid (pCA). However, we do not yet understand the molecular mechanisms by which pCA stimulates antigen-specific mucosal immune responses. In this study, we hypothesized that pCA might activate mucosal immunity at the site of administration based on our previous findings that pCA possesses immune-activating properties. However, contrary to our initial hypothesis, the intranasal administration of pCA did not enhance the expression of various genes involved in mucosal immune responses, including the enhancement of IgA responses. Therefore, we investigated whether pCA forms a complex with antigenic proteins and enhances antigen delivery to mucosal dendritic cells located in the lamina propria beneath the mucosal epithelial layer. Data from gel filtration chromatography indicated that pCA forms a complex with the antigenic protein ovalbumin (OVA). Furthermore, we examined the promotion of OVA delivery to nasal mucosal dendritic cells (mDCs) after the intranasal administration of pCA in combination with OVA and found that OVA uptake by mDCs was increased. Therefore, the data from gel filtration chromatography and flow cytometry imply that pCA enhances antigen-specific antibody production in both mucosal and systemic compartments by serving as an antigen-delivery vehicle.

12.
Appl Physiol Nutr Metab ; 49(8): 1035-1046, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38621297

ABSTRACT

Our prior results showed that an acute bout of endurance exercise for 6 h, but not 1 h, decreased pancreatic amylase activity, indicating that acute endurance exercise may affect carbohydrate digestive capacity in an exercise duration-dependent manner. Here, we investigated the effects of acute endurance exercise of different intensities on mouse pancreatic amylase activity. Male C57BL/6J mice performed low- or high-intensity running exercise for 60 min at either 10 (Ex-Low group) or 20 m/min (Ex-High group). The control group comprised sedentary mice. Immediately after acute exercise, pancreatic amylase activity was significantly decreased in the Ex-High group and not the Ex-Low group in comparison with the control group. To determine whether the decreased amylase activity induced by high-intensity exercise influenced muscle glycogen recovery after exercise, we investigated the rates of muscle glycogen resynthesis in Ex-High group mice administered either oral glucose or starch solution (2.0 mg/g body weight) immediately after exercise. The starch-fed mice exhibited significantly lower post-exercise glycogen accumulation rates in the 2-h recovery period compared with the glucose-fed mice. This difference in the glycogen accumulation rate was absent for starch- and glucose-fed mice in the sedentary (no exercise) control group. Furthermore, the plasma glucose AUC during early post-exercise recovery (0-60 min) was significantly lower in the starch-fed mice than in the glucose-fed mice. Thus, our findings suggest that acute endurance exercise diminishes the carbohydrate digestive capacity of the pancreas in a manner dependent on exercise intensity, with polysaccharides leading to delayed muscle glycogen recovery after exercise.


Subject(s)
Glycogen , Mice, Inbred C57BL , Muscle, Skeletal , Physical Conditioning, Animal , Animals , Male , Glycogen/metabolism , Physical Conditioning, Animal/physiology , Muscle, Skeletal/metabolism , Amylases/metabolism , Mice , Blood Glucose/metabolism , Starch/metabolism , Glucose/metabolism , Physical Endurance/physiology , Running/physiology , Pancreas/enzymology , Pancreas/metabolism , Dietary Carbohydrates/administration & dosage , Dietary Carbohydrates/metabolism
13.
Angew Chem Int Ed Engl ; 63(24): e202402922, 2024 06 10.
Article in English | MEDLINE | ID: mdl-38581637

ABSTRACT

Lipopolysaccharide (LPS), a cell surface component of Gram-negative bacteria, activates innate immunity. Its active principle is the terminal glycolipid lipid A. Acetobacter pasteurianus is a Gram-negative bacterium used in the fermentation of traditional Japanese black rice vinegar (kurozu). In this study, we focused on A. pasteurianus lipid A, which is a potential immunostimulatory component of kurozu. The active principle structure of A. pasteurianus lipid A has not yet been identified. Herein, we first systematically synthesized three types of A. pasteurianus lipid As containing a common and unique tetrasaccharide backbone. We developed an efficient method for constructing the 2-trehalosamine skeleton utilizing borinic acid-catalyzed glycosylation to afford 1,1'-α,α-glycoside in high yield and stereoselectivity. A common tetrasaccharide intermediate with an orthogonal protecting group pattern was constructed via [2+2] glycosylation. After introducing various fatty acids, all protecting groups were removed to achieve the first chemical synthesis of three distinct types of A. pasteurianus lipid As. After evaluating their immunological function using both human and murine cell lines, we identified the active principles of A. pasteurianus LPS. We also found the unique anomeric structure of A. pasteurianus lipid A contributes to its high chemical stability.


Subject(s)
Acetobacter , Lipid A , Lipid A/chemistry , Lipid A/immunology , Lipid A/chemical synthesis , Humans , Mice , Acetobacter/chemistry , Animals , Oligosaccharides/chemistry , Oligosaccharides/chemical synthesis , Glycosylation
14.
Nature ; 629(8013): 901-909, 2024 May.
Article in English | MEDLINE | ID: mdl-38658756

ABSTRACT

The liver is the main gateway from the gut, and the unidirectional sinusoidal flow from portal to central veins constitutes heterogenous zones, including the periportal vein (PV) and the pericentral vein zones1-5. However, functional differences in the immune system in each zone remain poorly understood. Here intravital imaging revealed that inflammatory responses are suppressed in PV zones. Zone-specific single-cell transcriptomics detected a subset of immunosuppressive macrophages enriched in PV zones that express high levels of interleukin-10 and Marco, a scavenger receptor that sequesters pro-inflammatory pathogen-associated molecular patterns and damage-associated molecular patterns, and consequently suppress immune responses. Induction of Marco+ immunosuppressive macrophages depended on gut microbiota. In particular, a specific bacterial family, Odoribacteraceae, was identified to induce this macrophage subset through its postbiotic isoallolithocholic acid. Intestinal barrier leakage resulted in inflammation in PV zones, which was markedly augmented in Marco-deficient conditions. Chronic liver inflammatory diseases such as primary sclerosing cholangitis (PSC) and non-alcoholic steatohepatitis (NASH) showed decreased numbers of Marco+ macrophages. Functional ablation of Marco+ macrophages led to PSC-like inflammatory phenotypes related to colitis and exacerbated steatosis in NASH in animal experimental models. Collectively, commensal bacteria induce Marco+ immunosuppressive macrophages, which consequently limit excessive inflammation at the gateway of the liver. Failure of this self-limiting system promotes hepatic inflammatory disorders such as PSC and NASH.


Subject(s)
Cholangitis, Sclerosing , Gastrointestinal Microbiome , Inflammation , Liver , Macrophages , Non-alcoholic Fatty Liver Disease , Symbiosis , Animals , Female , Humans , Male , Mice , Bacteroidetes/metabolism , Cholangitis, Sclerosing/immunology , Cholangitis, Sclerosing/microbiology , Cholangitis, Sclerosing/pathology , Gastrointestinal Microbiome/immunology , Gastrointestinal Microbiome/physiology , Gene Expression Profiling , Inflammation/immunology , Inflammation/microbiology , Inflammation/pathology , Interleukin-10/immunology , Interleukin-10/metabolism , Liver/immunology , Liver/pathology , Liver/microbiology , Macrophages/cytology , Macrophages/immunology , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/immunology , Non-alcoholic Fatty Liver Disease/microbiology , Non-alcoholic Fatty Liver Disease/pathology , Portal Vein , Receptors, Immunologic/deficiency , Receptors, Immunologic/metabolism , Single-Cell Analysis , Symbiosis/immunology
15.
Microorganisms ; 12(4)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38674725

ABSTRACT

Despite accumulating evidence that suggests a unique gut microbiota composition in athletes, a comprehensive understanding of this phenomenon is lacking. Furthermore, seasonal variation in the gut microbiota of athletes, particularly during the off-season, remains underexplored. This study aimed to compare the gut microbiotas between athletic subjects (AS) and non-athletic subjects (NS), and to investigate variations between athletic and off-season periods. The data were derived from an observational study involving Japanese male handball players. The results revealed a distinct gut microbiota composition in AS compared with NS, characterized by significantly higher alpha-diversity and a greater relative abundance of Faecalibacterium and Streptococcus. Moreover, a comparative analysis between athletic and off-season periods in AS demonstrated a significant change in alpha-diversity. Notably, AS exhibited significantly higher alpha-diversity than NS during the athletic season, but no significant difference was observed during the off-season. This study demonstrates the characteristics of the gut microbiota of Japanese handball players and highlights the potential for changes in alpha-diversity during the off-season. These findings contribute to our understanding of the dynamic nature of the gut microbiota of athletes throughout the season.

16.
Foods ; 13(6)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38540957

ABSTRACT

Bacteria generally release extracellular membrane vesicles (MVs), which are nanoparticles that play important roles in bacterial-bacterial and bacterial-host communication. As probiotics, lactic acid bacteria provide diverse health benefits to their hosts. In this study, we found that the Gram-positive lactic acid bacteria Lactiplantibacillus plantarum subsp. plantarum NBRC 15891 produce high amounts of MVs (LpMVs), and that LpMVs inhibit interleukin (IL)-8 production induced by lipopolysaccharide in intestinal epithelial HT29 cells. Heat- or UV-killed bacterial cells did not exhibit anti-inflammatory effects, and there was no uptake of these bacterial cells; contrarily, LpMVs were taken up into the cytoplasm of HT29 cells. Small RNAs extracted from LpMVs also suppressed IL-8 production in HT29 cells, suggesting that RNAs in the cytoplasm of bacterial cells are encapsulated in the MVs and released from the cells, which may be delivered to HT29 cells to exert their anti-inflammatory effects. In addition, administration of LpMVs to mice with dextran sodium sulfate-induced colitis alleviated colitis-induced weight loss and colon length shortening, indicating that LpMV intake is likely to be effective in preventing or ameliorating colitis.

17.
J Am Chem Soc ; 146(3): 2237-2247, 2024 01 24.
Article in English | MEDLINE | ID: mdl-38196121

ABSTRACT

The acetal (O-glycoside) bonds of glycans and glycoconjugates are chemically and biologically vulnerable, and therefore C-glycosides are of interest as more stable analogs. We hypothesized that, if the O-glycoside linkage plays a vital role in glycan function, the biological activities of C-glycoside analogs would vary depending on their substituents. Based on this idea, we adopted a "linkage-editing strategy" for the creation of glycan analogs (pseudo-glycans). We designed three types of pseudo-glycans with CH2 and CHF linkages, which resemble the O-glycoside linkage in terms of bond lengths, angles, and bulkiness, and synthesized them efficiently by means of fluorovinyl C-glycosylation and selective hydrogenation reactions. Application of this strategy to isomaltose (IM), an inducer of amylase expression, and α-GalCer, which activates iNKT cells, resulted in the discovery of CH2-IM, which shows increased amylase production ability, and CHF-α-GalCer, which shows activity opposite that of native α-GalCer, serving as an antagonist of iNKT cells.


Subject(s)
Galactosylceramides , Glycosides , Polysaccharides , Glycosylation , Polysaccharides/chemistry , Amylases/metabolism
18.
Biosci Microbiota Food Health ; 43(1): 55-63, 2024.
Article in English | MEDLINE | ID: mdl-38188665

ABSTRACT

Nanosized membrane vesicles (MVs) released by bacteria play important roles in both bacteria-bacteria and bacteria-host interactions. Some gram-positive lactic acid bacteria produce MVs exhibiting immunoregulatory activity in the host. We found that both bacterial cells and MVs of Limosilactobacillus antri JCM 15950, isolated from the human stomach mucosa, enhance immunoglobulin A production by murine Peyer's patch cells. However, the thick cell walls of gram-positive bacteria resulted in low MV production, limiting experiments and applications using MVs. In this study, we evaluated the effects of glycine, which inhibits cell wall synthesis, on the immunostimulatory MV productivity of L. antri. Glycine inhibited bacterial growth while increasing MV production, with 20 g/L glycine increasing MV production approximately 12-fold. Glycine was most effective at increasing MV production when added in the early exponential phase, which indicated that cell division in the presence of glycine increased MV production. Finally, glycine increased MV productivity approximately 16-fold. Furthermore, glycine-induced MVs promoted interleukin-6 production by macrophage-like J774.1 cells, and the immunostimulatory activity was comparable to that of spontaneously produced MVs. Our results indicate that glycine is an effective agent for improving the production of MVs with immunostimulatory activity in gram-positive lactic acid bacteria, which can be applied as mucosal adjuvants and functional foods.

19.
Obesity (Silver Spring) ; 32(2): 262-272, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37927202

ABSTRACT

OBJECTIVE: This study aimed to determine the effects of different energy loads on the gut microbiota composition and the rates of energy and nutrient excretion via feces and urine. METHODS: A randomized crossover dietary intervention study was conducted with three dietary conditions: overfeeding (OF), control (CON), and underfeeding (UF). Ten healthy men were subjected to each condition for 8 days (4 days and 3 nights in nonlaboratory and laboratory settings each). The effects of dietary conditions on energy excretion rates via feces and urine were assessed using a bomb calorimeter. RESULTS: Short-term energy loads dynamically altered the gut microbiota at the α-diversity (Shannon index), phylum, and genus levels (p < 0.05). Energy excretion rates via urine and urine plus feces decreased under OF more than under CON (urine -0.7%; p < 0.001, urine plus feces -1.9%; p = 0.049) and UF (urine -1.0%; p < 0.001, urine plus feces -2.1%; p = 0.031). However, energy excretion rates via feces did not differ between conditions. CONCLUSIONS: Although short-term overfeeding dynamically altered the gut microbiota composition, the energy excretion rate via feces was unaffected. Energy excretion rates via urine and urine plus feces were lower under OF than under CON and UF conditions.


Subject(s)
Gastrointestinal Microbiome , Male , Humans , Cross-Over Studies , Diet , Feces , Nutrients , RNA, Ribosomal, 16S
20.
Int Immunol ; 36(1): 33-43, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38006376

ABSTRACT

We previously demonstrated that Alcaligenes-derived lipid A (ALA), which is produced from an intestinal lymphoid tissue-resident commensal bacterium, is an effective adjuvant for inducing antigen-specific immune responses. To understand the immunologic characteristics of ALA as a vaccine adjuvant, we here compared the adjuvant activity of ALA with that of a licensed adjuvant (monophosphoryl lipid A, MPLA) in mice. Although the adjuvant activity of ALA was only slightly greater than that of MPLA for subcutaneous immunization, ALA induced significantly greater IgA antibody production than did MPLA during nasal immunization. Regarding the underlying mechanism, ALA increased and activated CD11b+ CD103- CD11c+ dendritic cells in the nasal tissue by stimulating chemokine responses. These findings revealed the superiority of ALA as a mucosal adjuvant due to the unique immunologic functions of ALA in nasal tissue.


Subject(s)
Alcaligenes , Lipid A , Animals , Mice , Lipid A/pharmacology , Adjuvants, Immunologic/pharmacology , Dendritic Cells
SELECTION OF CITATIONS
SEARCH DETAIL