Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters








Database
Language
Publication year range
1.
J Biol Chem ; 276(34): 31528-34, 2001 Aug 24.
Article in English | MEDLINE | ID: mdl-11425856

ABSTRACT

The first extracellular domain (ECD-1) of the corticotropin releasing factor (CRF) type 1 receptor, (CRFR1), is important for binding of CRF ligands. A soluble protein, mNT-CRFR1, produced by COS M6 cells transfected with a cDNA encoding amino acids 1--119 of human CRFR1 and modified to include epitope tags, binds a CRF antagonist, astressin, in a radioreceptor assay using [(125)I-d-Tyr(0)]astressin. N-terminal sequencing of mNT-CRFR1 showed the absence of the first 23 amino acids of human CRFR1. This result suggests that the CRFR1 protein is processed to cleave a putative signal peptide corresponding to amino acids 1--23. A cDNA encoding amino acids 24--119 followed by a FLAG tag, was expressed as a thioredoxin fusion protein in Escherichia coli. Following thrombin cleavage, the purified protein (bNT-CRFR1) binds astressin and the agonist urocortin with high affinity. Reduced, alkylated bNT-CRFR1 does not bind [(125)I-D-Tyr(0)]astressin. Mass spectrometric analysis of photoaffinity labeled bNT-CRFR1 yielded a 1:1 complex with ligand. Analysis of the disulfide arrangement of bNT-CRFR1 revealed bonds between Cys(30) and Cys(54), Cys(44) and Cys(87), and Cys(68) and Cys(102). This arrangement is similar to that of the ECD-1 of the parathyroid hormone receptor (PTHR), suggesting a conserved structural motif in the N-terminal domain of this family of receptors.


Subject(s)
Corticotropin-Releasing Hormone/genetics , Amino Acid Sequence , Animals , COS Cells , Circular Dichroism , Corticotropin-Releasing Hormone/chemistry , Corticotropin-Releasing Hormone/isolation & purification , DNA, Complementary , Humans , Molecular Sequence Data , Solubility
2.
Proc Natl Acad Sci U S A ; 98(5): 2843-8, 2001 Feb 27.
Article in English | MEDLINE | ID: mdl-11226328

ABSTRACT

Here we describe the cloning and initial characterization of a previously unidentified CRF-related neuropeptide, urocortin II (Ucn II). Searches of the public human genome database identified a region with significant sequence homology to the CRF neuropeptide family. By using homologous primers deduced from the human sequence, a mouse cDNA was isolated from whole brain poly(A)(+) RNA that encodes a predicted 38-aa peptide, structurally related to the other known mammalian family members, CRF and Ucn. Ucn II binds selectively to the type 2 CRF receptor (CRF-R2), with no appreciable activity on CRF-R1. Transcripts encoding Ucn II are expressed in discrete regions of the rodent central nervous system, including stress-related cell groups in the hypothalamus (paraventricular and arcuate nuclei) and brainstem (locus coeruleus). Central administration of 1-10 microg of peptide elicits activational responses (Fos induction) preferentially within a core circuitry subserving autonomic and neuroendocrine regulation, but whose overall pattern does not broadly mimic the CRF-R2 distribution. Behaviorally, central Ucn II attenuates nighttime feeding, with a time course distinct from that seen in response to CRF. In contrast to CRF, however, central Ucn II failed to increase gross motor activity. These findings identify Ucn II as a new member of the CRF family of neuropeptides, which is expressed centrally and binds selectively to CRF-R2. Initial functional studies are consistent with Ucn II involvement in central autonomic and appetitive control, but not in generalized behavioral activation.


Subject(s)
Corticotropin-Releasing Hormone/metabolism , Amino Acid Sequence , Animals , Behavior, Animal , CHO Cells , Cloning, Molecular , Corticotropin-Releasing Hormone/chemistry , Corticotropin-Releasing Hormone/genetics , Cricetinae , Male , Molecular Sequence Data , Polymerase Chain Reaction , Proto-Oncogene Proteins c-fos/genetics , RNA, Messenger/genetics , Rats , Rats, Sprague-Dawley , Receptors, Corticotropin-Releasing Hormone/metabolism , Sequence Homology, Amino Acid , Urocortins
3.
J Biol Chem ; 275(5): 3206-12, 2000 Feb 04.
Article in English | MEDLINE | ID: mdl-10652306

ABSTRACT

Type II activin receptors (ActRII and ActRIIB) are single-transmembrane domain serine/threonine kinase receptors that bind activin to initiate the signaling and cellular responses triggered by this hormone. Inhibin also binds type II activin receptors and antagonizes many activin effects. Here we describe alanine scanning mutagenesis of the ActRII extracellular domain. We identify a cluster of three hydrophobic residues (Phe(42), Trp(60), and Phe(83)) that, when individually mutated to alanine in the context of the full-length receptor, cause the disruption of activin and inhibin binding to ActRII. Each of the alanine-substituted ActRII mutants retaining activin binding maintains the ability to form cross-linked complexes with activin and supports activin cross-linking to the type I activin receptor ALK4. Unlike wild-type ActRII, the three mutants unable to bind activin do not cause an increase in activin signaling when transiently expressed in a corticotroph cell line. Together, our results implicate these residues in forming a critical binding surface on ActRII required for functional interactions with both activin and inhibin. This first identification of a transforming growth factor-beta family member binding site may provide a general basis for characterizing binding sites for other members of the superfamily.


Subject(s)
Inhibins/chemistry , Receptors, Growth Factor/chemistry , Activin Receptors , Activins , Amino Acid Sequence , Animals , Binding Sites , Cell Line , Inhibins/metabolism , Mice , Molecular Sequence Data , Mutation , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , Receptors, Growth Factor/genetics , Receptors, Growth Factor/metabolism , Signal Transduction , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL