Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
Sci Data ; 9(1): 722, 2022 11 24.
Article in English | MEDLINE | ID: mdl-36433985

ABSTRACT

Plasmodium cynomolgi causes zoonotic malarial infections in Southeast Asia and this parasite species is important as a model for Plasmodium vivax and Plasmodium ovale. Each of these species produces hypnozoites in the liver, which can cause relapsing infections in the blood. Here we present methods and data generated from iterative longitudinal systems biology infection experiments designed and performed by the Malaria Host-Pathogen Interaction Center (MaHPIC) to delve deeper into the biology, pathogenesis, and immune responses of P. cynomolgi in the Macaca mulatta host. Infections were initiated by sporozoite inoculation. Blood and bone marrow samples were collected at defined timepoints for biological and computational experiments and integrative analyses revolving around primary illness, relapse illness, and subsequent disease and immune response patterns. Parasitological, clinical, haematological, immune response, and -omic datasets (transcriptomics, proteomics, metabolomics, and lipidomics) including metadata and computational results have been deposited in public repositories. The scope and depth of these datasets are unprecedented in studies of malaria, and they are projected to be a F.A.I.R., reliable data resource for decades.


Subject(s)
Malaria , Plasmodium cynomolgi , Animals , Host-Pathogen Interactions , Macaca mulatta , Plasmodium cynomolgi/physiology , Sporozoites , Systems Biology , Zoonoses
2.
PLoS Pathog ; 15(9): e1007974, 2019 09.
Article in English | MEDLINE | ID: mdl-31536608

ABSTRACT

Plasmodium relapses are attributed to the activation of dormant liver-stage parasites and are responsible for a significant number of recurring malaria blood-stage infections. While characteristic of human infections caused by P. vivax and P. ovale, their relative contribution to malaria disease burden and transmission remains poorly understood. This is largely because it is difficult to identify 'bona fide' relapse infections due to ongoing transmission in most endemic areas. Here, we use the P. cynomolgi-rhesus macaque model of relapsing malaria to demonstrate that clinical immunity can form after a single sporozoite-initiated blood-stage infection and prevent illness during relapses and homologous reinfections. By integrating data from whole blood RNA-sequencing, flow cytometry, P. cynomolgi-specific ELISAs, and opsonic phagocytosis assays, we demonstrate that this immunity is associated with a rapid recall response by memory B cells that expand and produce anti-parasite IgG1 that can mediate parasite clearance of relapsing parasites. The reduction in parasitemia during relapses was mirrored by a reduction in the total number of circulating gametocytes, but importantly, the cumulative proportion of gametocytes increased during relapses. Overall, this study reveals that P. cynomolgi relapse infections can be clinically silent in macaques due to rapid memory B cell responses that help to clear asexual-stage parasites but still carry gametocytes.


Subject(s)
Immunity, Humoral , Malaria/immunology , Malaria/parasitology , Plasmodium cynomolgi/immunology , Plasmodium cynomolgi/pathogenicity , Animals , Antibodies, Protozoan/blood , B-Lymphocytes/immunology , Gene Expression Profiling , Host-Parasite Interactions/genetics , Host-Parasite Interactions/immunology , Humans , Immunity, Humoral/genetics , Immunoglobulin G/blood , Immunologic Memory/genetics , Macaca mulatta , Malaria/genetics , Malaria, Vivax/genetics , Malaria, Vivax/immunology , Malaria, Vivax/parasitology , Male , Parasitemia/genetics , Parasitemia/immunology , Parasitemia/parasitology , Plasmodium vivax/immunology , Plasmodium vivax/pathogenicity , Recurrence , Sporozoites/immunology , Sporozoites/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL