Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
Ultrason Sonochem ; 82: 105863, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34896908

ABSTRACT

Use of ultrasound as an intensified non-destructive decontamination technique for processing graphite limits its reusability beyond a few number of decontamination cycles due to the exfoliation of graphite due to cavitation effects. The current work establishes that the use of platinum nanoparticles in the leachant reduces the erosion of graphite substrate due to cavitation. It presents an improved way of sonochemical recovery of ceria using a mixture of nitric acid, formic acid and hydrazinium nitrate in the presence of platinum nanoparticles and ionic liquid. The platinum nanoparticles catalyst in ionic liquid prevented the generation of the carbon residue due to the combined effect of denitration and reduced sonication. The presence of the catalyst showed a fivefold increase in dissolution kinetics of ceria as well as absence of graphite erosion, facilitating better chances of graphite recycling than the decontamination without the catalyst. The catalytic approach offers a better recycle strategy for graphite with reduced exfoliation and NOx generation due to denitration, making it a more sustainable decontamination process. Since ceria is used as a surrogate for plutonium oxide, the results can be extended to decontaminate such deposits clearly establishing the utility of the presented results in the nuclear industry.

2.
Ultrason Sonochem ; 65: 105066, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32213440

ABSTRACT

Decontamination of graphite structural elements and recovery of uranium is crucial for waste minimization and recycle of nuclear fuel elements. Feasibility of intensified dissolution of uranium-impregnated graphite substrate using ultrasound has been studied with objective of establishing the effect of operating parameters and the kinetics of sonocatalytic dissolution of uranium in nitric acid. The effect of operating frequency and acoustic intensity as well as the acid concentration and temperature on the dissolution of metal has been elucidated. It was observed that at lower acid concentrations (6 M-8 M), the dissolution ratio increases by 15% on increasing the bath temperature from 45 to 70 °C. At higher acid concentration (>10 M), the increase was only around 5-7% for a similar change in temperature. With 12 M HNO3, pitting was also observed on the graphite surface along with erosion due to high local reaction rates in the presence of ultrasound. For higher frequency of applied ultrasound, lower dissolution rate of uranium was observed though it also leads to high rates of erosion of the substrate. It was thus established that suitable optimization of frequency is required based on the nature of the substrate and the choice of recycling it. The dissolution rate was also demonstrated to increase with acoustic intensity till it reaches to the maximum at the observed optimum (1.2 W/cm2 at 33 kHz). Comparison with silent conditions revealed that enhanced rate was obtained due to the use of ultrasound under optimum conditions. The work has demonstrated the effective application of ultrasound for intensifying the extent of dissolution of metal.

SELECTION OF CITATIONS
SEARCH DETAIL