Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters








Database
Language
Publication year range
1.
J Hazard Mater ; 446: 130710, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36603429

ABSTRACT

Soil is an important sink for various pollutants. Recent findings suggest that soil and sediment would spontaneously form HO• through Fenton or Fenton-like reactions under natural conditions. In this study, the effects and mechanisms of organic ligands (OLs) on the occurrence of HO• in surface soil/sediment were experimentally and computationally examined. Results confirmed that HO• generation was ND-12.92 nmol/g in surface soil/sediment, and the addition of EDTA-2Na would significantly enhance the yields of HO• by 1.4-352 times. Moisture was the decisive factor of soil HO• generation. The release of Fe(II) from solid into the aqueous phase was essential for the stimulation of HO• in EDTA-2Na suspensions. Furthermore, complexation reactions between Fe(II) and OLs would enhance single electron transfer (SET) reactions and the formation of O2•-. Interestingly, for specific OLs, their stimulations on SET and formation of O2•- would depress HO• generation. Provoking HO• generation by OLs could be efficiently used to degrade sulfamethoxazole in rice field sediment. The study provided new knowledge on how commonly synthetic OLs affect the HO• generation in surface soil/sediment, and it additionally shed light on the engineered stimulation of in-situ Fenton reactions in natural soil/sediment.

2.
Environ Sci Pollut Res Int ; 28(31): 42217-42229, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33797048

ABSTRACT

Natural iron minerals and zero-valent metals have been widely tested as catalysts for the Fenton-like process, but the systematical comparison study about their catalytic performance was rarely conducted, and the risk of the secondary pollution of toxic heavy metals was still not uncertain. In this paper, a comparison study of applying pyrite, ilmenite, vanadium titano-magnetite (VTM), zero-valent iron (ZVI), and zero-valent copper (ZVC) as Fenton-like catalysts for the removal of imidacloprid was performed. The results showed that ZVI exhibited the highest activity among the recyclable solid catalysts with a removal rate of 96.8% at initial pH 3 using 10.78 mmol/L H2O2, due to iron corrosive dissolution. Vanadium titano-magnetite (VTM) exhibited the best activity at first use among tested minerals but with low reusability. Pyrite with stable morphology showed a medium but sustainable ability to degrade imidacloprid, achieving a removal rate of 10.5% in the fifth use. The reaction much favored the acidic condition of initial pH around 2 or 3. Meanwhile, there was a significant positive correlation between removal efficiency and dissolved Fe or Cu concentration. Pyrite was considered to be a promising catalyst in Fenton-like reaction. It was suggested that the system proceeded predominantly through a homogeneous route via dissolved Fe or Cu ions. Except ZVC and VTM, other tested catalysts showed the low possibility of causing secondary pollution of toxic metals in the application of Fenton-like process.


Subject(s)
Hydrogen Peroxide , Water Pollutants, Chemical , Iron , Minerals , Neonicotinoids , Nitro Compounds , Oxidation-Reduction , Water Pollutants, Chemical/analysis
3.
J Environ Manage ; 270: 110824, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32721299

ABSTRACT

Lignocellulosic biomass has been widely introduced into the liquefaction process of sewage sludge (SS) to improve the yield/quality of liquefaction products (bio-oil/biochar). This study explores the effect of adding rice straw (RS) and wood sawdust (WS) on the transport/conversion behaviors of heavy metals (HMs) during the liquefaction of SS. The introduction of lignocellulosic biomass, especially for RS, substantially lowers the total content of HMs in biochar. Most HMs (except Cd) still remain in biochar, although the introduction of RS/WS enhances the transport of HMs into bio-oils. The addition of RS/WS raises the percentage of HMs in active form, but the contents of bioavailable/leachable HMs are not considerably increased and even decreased in some cases, especially when RS is introduced. The overall pollution degree and environmental risk of HMs in biochars are lowered to a certain extent with the addition of RS/WS. Considering that the pollution degree and environmental risk of HMs present in biochars are still at a considerable level, appropriate pollution management measures should be undertaken when using such biochars for agricultural use.


Subject(s)
Metals, Heavy , Oryza , Biomass , Charcoal , Sewage , Wood
4.
RSC Adv ; 9(70): 41351-41360, 2019 Dec 09.
Article in English | MEDLINE | ID: mdl-35540042

ABSTRACT

In this study, immobilizing partial denitrification biomass and redox mediators to integrate with the anammox process for nitrogen removal was investigated. Three redox mediators (RMs), namely, 2-methyl-1,4-naphthoquinone (ME), anthraquinone (AQ) and 1-dichloroanthraquinone (1-AQ) were catalyzed to reduce nitrate to only nitrite by denitrification to integrate with the anammox process for nitrogen removal. First, our experimental results showed that there were 35.8, 42.2 and 53.0 mg-N L-1 nitrite accumulation values with the addition of ME, AQ and 1-AQ, respectively, at the dose of 75 µM by the denitrification process at C/N = 2, which were 25.6%, 48.2% and 86.1% higher than that of the control without the addition of any RMs. Nitrate reductase activities were higher than that of nitrite reductase affected by RMs, which was the main reason for nitrite accumulation and further maintenance of the anammox process. Second, owing to the stable nitrite production by the partial denitrifying biomass with the addition of 1-AQ, the nitrogen removal rate of the reactor that integrated the partial denitrification and anammox process reached 1788.36 g-N m-3 d-1 only using ammonia and nitrate as the influent nitrogen resource in the long-term operation. Third, the 16S rDNA sequencing results demonstrated that Yersinia frederiksenii and Thauera were the primary groups of the denitrifying biomass, which were considered the dominant partial denitrification species.

SELECTION OF CITATIONS
SEARCH DETAIL