Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters








Publication year range
1.
Adv Mater ; : e2410466, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39375978

ABSTRACT

High-frequency electronic response governs a broad spectrum of electromagnetic applications from radiation protection, and signal compatibility, to energy recovery. Despite various efforts to manage electric conductivity, dynamic control over dielectric polarization for real-time electromagnetic modulation remains a notable challenge. Herein, an electrochemical lithiation-driven hierarchical disordering strategy is demonstrated for actively modulating electromagnetic properties. The controllable formation and diffusion of coherent interfaces and cation vacancies tailor the coupling of atomic electric field and thus the locally polarized domains, which leads to the reversible electromagnetic transparency/absorption switching with a tunable range of -0.8--20.4 dB for the reflection loss and a broad operation bandwidth of 4.6 GHz. Compared to traditional methods of heteroatomic doping, hydrogenation, mechanical deformation, and phase transition, the electrochemical strategy shows a larger regulation scope of dielectric permittivity with the maximum increase ratios of 260% and 1950% for real and imaginary parts, respectively. This enables the construction of various device architectures including the adaptive window and pixelated metasurface. The results offer opportunities to achieve intelligent electromagnetic devices and pave an avenue to rejuvenate various electromagnetic functions of semiconductive oxides.

2.
Med Image Anal ; 97: 103285, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39116766

ABSTRACT

We introduce the largest abdominal CT dataset (termed AbdomenAtlas) of 20,460 three-dimensional CT volumes sourced from 112 hospitals across diverse populations, geographies, and facilities. AbdomenAtlas provides 673 K high-quality masks of anatomical structures in the abdominal region annotated by a team of 10 radiologists with the help of AI algorithms. We start by having expert radiologists manually annotate 22 anatomical structures in 5,246 CT volumes. Following this, a semi-automatic annotation procedure is performed for the remaining CT volumes, where radiologists revise the annotations predicted by AI, and in turn, AI improves its predictions by learning from revised annotations. Such a large-scale, detailed-annotated, and multi-center dataset is needed for two reasons. Firstly, AbdomenAtlas provides important resources for AI development at scale, branded as large pre-trained models, which can alleviate the annotation workload of expert radiologists to transfer to broader clinical applications. Secondly, AbdomenAtlas establishes a large-scale benchmark for evaluating AI algorithms-the more data we use to test the algorithms, the better we can guarantee reliable performance in complex clinical scenarios. An ISBI & MICCAI challenge named BodyMaps: Towards 3D Atlas of Human Body was launched using a subset of our AbdomenAtlas, aiming to stimulate AI innovation and to benchmark segmentation accuracy, inference efficiency, and domain generalizability. We hope our AbdomenAtlas can set the stage for larger-scale clinical trials and offer exceptional opportunities to practitioners in the medical imaging community. Codes, models, and datasets are available at https://www.zongweiz.com/dataset.


Subject(s)
Algorithms , Benchmarking , Imaging, Three-Dimensional , Radiography, Abdominal , Tomography, X-Ray Computed , Humans , Imaging, Three-Dimensional/methods , Datasets as Topic
3.
ACS Appl Mater Interfaces ; 16(36): 47832-47843, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39192455

ABSTRACT

The construction of heterogeneous microstructure and the selection of multicomponents have turned into a research hotspot in developing ultralight, multifunctional, high-efficiency electromagnetic wave absorbing (EMA) materials. Although aerogels are promising materials to fulfill the above requirements, the increase in functional fillers inevitably leads to the deterioration of intrinsic properties. Tuning the electromagnetic properties from the structural design point of view remains a difficult challenge. Herein, we design customized pore creation strategies via introducing sacrificial templates to optimize the conductive path and construct the discontinuous dielectric medium, increasing dielectric loss and achieving efficient microwave absorption properties. A 3D porous composite (MEM) was crafted, which encapsulated an EVA/FeCoNi (EVA/MNPs) framework with Ti3C2Tx MXene coating by employing a direct heated cross-linking and immersion method. Controllable adjustment of the conductive network inside the porous structure and regulation of the dielectric character are achieved by porosity variation. Eventually, the MEM-5 with a porosity of 66.67% realizes RLmin of -39.2 dB (2.2 mm) and can cover the entire X band. Moreover, through off-axis electronic holography and the calculation of conduction loss and polarization loss, the dielectric property is deeply investigated, and the inner mechanism of optimization is pointed out. Thanks to the inherent characteristic of EVA and the porous structure, MEM-5 showed excellent thermal insulating and superior compressibility, which can maintain 60 °C on a 90-100 °C continuous heating stage and reached a maximum compressive strength of 60.12 kPa at 50% strain. Conceivably, this work provides a facile method for the fabrication of highly efficient microwave absorbers applied under complex conditions.

4.
Small ; : e2402729, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39077957

ABSTRACT

Interface design has enormous potential for the enhancement of interfacial polarization and microwave absorption properties. However, the construction of interfaces is always limited in components of a single dimension. Developing systematic strategies to customize multidimensional interfaces and fully utilize advantages of low-dimensional materials remains challenging. Two-dimensional transition metal dichalcogenides (TMDCs) have garnered significant attention owing to their distinctive electrical conductivity and exceptional interfacial effects. In this study, a series of hollow TMDCs@C fibers are synthesized via sacrificial template of CdS and confined growth of TMDCs embedded in the fibers. The complex permittivity of the hollow TMDCs@C fibers can be adjusted by tuning the content of CdS templates. Importantly, the multidimensional interfaces of the fibers contribute to elevating the microwave absorption performance. Among the hollow TMDCs@C fibers, the minimum reflection loss (RLmin) of the hollow MoS2@C fibers can reach -52.0 dB at the thickness of 2.5 mm, with a broad effective absorption bandwidth of 4.56 GHz at 2.0 mm. This work establishes an alternative approach for constructing multidimensional coupling interfaces and optimizing TMDCs as microwave absorption materials.

5.
Nano Lett ; 24(31): 9591-9597, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39051981

ABSTRACT

Spinel oxides have emerged as a promising candidate in the realm of nanozymes with variable oxidation states, while their limited active sites and low conductivity hinder further application. In this work, we synthesize a series of metal-doped NiCo2O4 nanospheres decorated with Pd, which are deployed as highly efficient nanozymes for the detection of cancer biomarkers. Through meticulous modulation of the molar ratio between NiCo2O4 and Pd, we orchestrated precise control over the oxygen vacancies and electronic structure within the nanozymes, a key factor in amplifying the catalytic prowess. Leveraging the superior H2O2 reduction catalytic properties of Fe-NiCo2O4@Pd, we have successfully implemented its application in the electrochemical detection of biomarkers, achieving unparalleled analytical performance, much higher than that of Pd/C and other reported nanozymes. This research paves the way for innovative electron modification strategies in the design of high-performance nanozymes, presenting a formidable tool for clinical diagnostic analyses.


Subject(s)
Cobalt , Hydrogen Peroxide , Oxides , Palladium , Catalysis , Palladium/chemistry , Cobalt/chemistry , Oxides/chemistry , Hydrogen Peroxide/chemistry , Oxidation-Reduction , Nickel/chemistry , Humans , Electrochemical Techniques
6.
Mar Genomics ; 76: 101112, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39009493

ABSTRACT

Dimethylsulfoniopropionate (DMSP) is a ubiquitous organosulfur molecule in marine environments with important roles in stress tolerance, global carbon and sulfur cycling, and chemotaxis. It is the main precursor of the climate active gas dimethyl sulfide (DMS), which is the greatest natural source of bio­sulfur transferred from ocean to atmosphere. Alteromonas sp. M12, a Gram-negative and aerobic bacterium, was isolated from the seawater samples collected from the Mariana Trench at the depth of 2500 m. Here, we report the complete genome sequence of strain M12 and its genomic characteristics to import and utilize DMSP. The genome of strain M12 contains one circular chromosome (5,012,782 bp) with the GC content of 40.88%. Alteromonas sp. M12 can grow with DMSP as a sole carbon source, and produced DMS with DMSP as a precursor. Genomic analysis showed that strain M12 contained a set of genes involved in the downstream steps of DMSP cleavage, but no known genes encoding DMSP transporters or DMSP lyases. The results indicated that this strain contained novel DMSP transport and cleavage genes in its genome which warrants further investigation. The import of DMSP into cells may be a strategy of strain M12 to adapt the hydrostatic pressure environment in the Mariana Trench, as DMSP can be used as a hydrostatic pressure protectant. This study sheds light on the catabolism of DMSP by deep-sea bacteria.


Subject(s)
Alteromonas , Genome, Bacterial , Sulfonium Compounds , Sulfonium Compounds/metabolism , Alteromonas/genetics , Seawater/microbiology , Sulfides
7.
Small ; 20(37): e2401878, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38742982

ABSTRACT

Atomic doping is widely employed to fine-tune crystal structures, energy band structures, and the corresponding electrical properties. However, due to the difficulty in precisely regulating doping sites and concentrations, establishing a relationship between electricity properties and doping becomes a huge challenge. In this work, a modulation strategy on A-site cation dopant into spinel-phase metal sulfide Co9S8 lattice via Fe and Ni elements is developed to improve the microwave absorption (MA) properties. At the atomic scale, accurately controlling doped sites can introduce local lattice distortions and strain concentration. Tunned electron energy redistribution of the doped Co9S8 strengthens electron interactions, ultimately enhancing the high-frequency dielectric polarization (ɛ' from 10.5 to 12.5 at 12 GHz). For the Fe-doped Co9S8, the effective absorption bandwidth (EAB) at 1.7 mm increases by 5%, and the minimum reflection loss (RLmin) improves by 26% (EAB = 5.8 GHz, RLmin = -46 dB). The methodology of atomic-scale fixed-point doping presents a promising avenue for customizing the dielectric properties of nanomaterials, imparting invaluable insights for the design of cutting-edge high-performance microwave absorption materials.

8.
Nat Commun ; 15(1): 3278, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627376

ABSTRACT

Distinct skyrmion phases at room temperature hosted by one material offer additional degree of freedom for the design of topology-based compact and energetically-efficient spintronic devices. The field has been extended to low-dimensional magnets with the discovery of magnetism in two-dimensional van der Waals magnets. However, creating multiple skyrmion phases in 2D magnets, especially above room temperature, remains a major challenge. Here, we report the experimental observation of mixed-type skyrmions, exhibiting both Bloch and hybrid characteristics, in a room-temperature ferromagnet Fe3GaTe2. Analysis of the magnetic intensities under varied imaging conditions coupled with complementary simulations reveal that spontaneous Bloch skyrmions exist as the magnetic ground state with the coexistence of hybrid stripes domain, on account of the interplay between the dipolar interaction and the Dzyaloshinskii-Moriya interaction. Moreover, hybrid skyrmions are created and their coexisting phases with Bloch skyrmions exhibit considerably high thermostability, enduring up to 328 K. The findings open perspectives for 2D spintronic devices incorporating distinct skyrmion phases at room temperature.

9.
Adv Mater ; 36(24): e2313411, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38469974

ABSTRACT

Precise manipulation of van der Waals forces within 2D atomic layers allows for exact control over electron-phonon coupling, leading to the exceptional quantum properties. However, applying this technique to diverse structures such as 3D materials is challenging. Therefore, investigating new hierarchical structures and different interlayer forces is crucial for overcoming these limitations and discovering novel physical properties. In this work, a multishelled ferromagnetic material with controllable shell numbers is developed. By strategically regulating the magnetic interactions between these shells, the magnetic properties of each shell are fine-tuned. This approach reveals distinctive magnetic characteristics including regulated magnetic domain configurations and enhanced effective fields. The nanoscale magnetic interactions between the shells are observed and analyzed, which shed light on the modified magnetic properties of each shell, enhancing the understanding and control of ferromagnetic materials. The distinctive magnetic interaction significantly boosts electromagnetic absorption at low-frequency frequencies used by fifth-generation wireless devices, outperforming ferromagnetic materials without multilayer structures by several folds. The application of magnetic interactions in materials science reveals thrilling prospects for technological and electronic innovation.

10.
Adv Mater ; 36(18): e2311831, 2024 May.
Article in English | MEDLINE | ID: mdl-38253422

ABSTRACT

Controlling the multi-state switching is significantly essential for the extensive utilization of 2D ferromagnet in magnetic racetrack memories, topological devices, and neuromorphic computing devices. The development of all-electric functional nanodevices with multi-state switching and a rapid reset remains challenging. Herein, to imitate the potentiation and depression process of biological synapses, a full-current strategy is unprecedently established by the controllable resistance-state switching originating from the spin configuration rearrangement by domain wall number modulation in Fe3GeTe2. In particular, a strong correlation is uncovered in the reduction of domain wall number with the corresponding resistance decreasing by in-situ Lorentz transmission electron microscopy. Interestingly, the magnetic state is reversed instantly to the multi-domain wall state under a single pulse current with a higher amplitude, attributed to the rapid thermal demagnetization by simulation. Based on the neuromorphic computing system with full-current-driven artificial Fe3GeTe2 synapses with multi-state switching, a high accuracy of ≈91% is achieved in the handwriting image recognition pattern. The results identify 2D ferromagnet as an intriguing candidate for future advanced neuromorphic spintronics.

11.
Small ; 20(16): e2308581, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38039500

ABSTRACT

Structure engineering of magnetic-dielectric multi-components is emerging as an effective approach for presuming high-performance electromagnetic (EM) absorption, but still faces bottlenecks due to the ambiguous regulation mechanism of surface morphology. Here, a novel wrinkled surface structure is tailored on the ZnFe2O4 microsphere via a spray-pyrolysis induced Kirkendall diffusion effect, the conductivity of the sample is affected, and a better impedance matching is adjusted by modulating the concentration of metal nitrate precursors. Driven by a vapor phase polymerization, conductive polypyrrole (PPy) shell are in situ decorated on the ZnFe2O4 microsphere surfaces, ingeniously constructing a core-shell ZnFe2O4@PPy composites. Moreover, a systematic investigation reveals that this unique wrinkled surface structure is highly dependent on the metal salt concentration. Optimized wrinkle ZnFe2O4@PPy composite exhibits a minimum reflection loss (RLmin) reached -41.0 dB and the effective absorption bandwidth (EAB) can cover as wide as 4.1 GHz. The enhanced interfacial polarization originated from high-density ZnFe2O4-PPy heterostructure, and the conduction loss of PPy contributes to the boosted dielectric loss capability. This study gives a significant guidance for preparing high-performance EM composites by tailoring the surface wrinkle structure.

SELECTION OF CITATIONS
SEARCH DETAIL