Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters








Publication year range
1.
Bioconjug Chem ; 35(9): 1363-1372, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39150455

ABSTRACT

About 90% of active pharmaceutical ingredients (APIs) in the oral drug delivery system pipeline have poor aqueous solubility and low bioavailability. To address this problem, amorphous solid dispersions (ASDs) embed hydrophobic APIs within polymer excipients to prevent drug crystallization, improve solubility, and increase bioavailability. There are a limited number of commercial polymer excipients, and the structure-function relationships which lead to successful ASD formulations are not well-documented. There are, however, certain solid-state ASD characteristics that inform ASD performance. One characteristic shared by successful ASDs is a high glass transition temperature (Tg), which correlates with higher shelf stability and decreased drug crystallization. We aim to identify how polymer features such as side chain geometry, backbone methylation, and hydrophilic-lipophilic balance impact Tg to design copolymers capable of forming high-Tg ASDs. We tested a library of 50 ASD formulations (18 previously studied and 32 newly synthesized) of the model drug probucol with copolymers synthesized through automated photoinduced electron/energy transfer-reversible addition-fragmentation chain-transfer (PET-RAFT) polymerization. A machine learning (ML) algorithm was trained on the Tg data to identify the major factors influencing Tg, including backbone methylation and nonlinear side chain geometry. In both polymer alone and probucol-loaded ASDs, a Random Forest Regressor captured structure-function trends in the data set and accurately predicted Tg with an average R2 > 0.83 across a 10-fold cross validation. This ML model will be used to predict novel copolymers to design ASDs with high Tg, a crucial factor in predicting ASD success.


Subject(s)
Excipients , Polymers , Excipients/chemistry , Polymers/chemistry , Solubility , Hydrophobic and Hydrophilic Interactions , Crystallization , Drug Design , Probucol/chemistry , Transition Temperature
2.
Mol Pharm ; 21(4): 1933-1941, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38502549

ABSTRACT

Islatravir, a highly potent nucleoside reverse transcriptase translocation inhibitor (NRTTI) for the treatment of HIV, has great potential to be formulated as ethylene-vinyl acetate (EVA) copolymer-based implants via hot melt extrusion. The crystallinity of EVA determines its physical and rheological properties and may impact the drug-eluting implant performance. Herein, we describe the systematic analysis of factors affecting the EVA crystallinity in islatravir implants. Differential scanning calorimetry (DSC) on EVA and solid-state NMR revealed drug loading promoted EVA crystallization, whereas BaSO4 loading had negligible impact on EVA crystallinity. The sterilization through γ-irradiation appeared to significantly impact the EVA crystallinity and surface characteristics of the implants. Furthermore, DSC analysis of thin implant slices prepared with an ultramicrotome indicated that the surface layer of the implant was more crystalline than the core. These findings provide critical insights into factors affecting the crystallinity, mechanical properties, and physicochemical properties of the EVA polymer matrix of extruded islatravir implants.


Subject(s)
Deoxyadenosines , Ethylenes , Polyvinyls , Vinyl Compounds , Polyvinyls/chemistry
3.
J Pharm Biomed Anal ; 239: 115863, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38056285

ABSTRACT

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging has been used to study the hydrolysis of tenofovir disoproxil fumarate (TDF) to tenofovir monosoproxil (TM) within an oral compressed tablet. The ToF-SIMS images displayed a heterogenous distribution of the matrix components. Evaluation of the TM distribution revealed that it was primarily co-localized with areas of higher excipient concentration pointing toward excipient driven degradation. To support these observations, a compatibility study of TDF with each tablet component was performed via liquid chromatography. The ToF-SIMS imaging and compatibility study indicated that the excipient, Avicel® PH-102, was the primary driver of TM formation in the tablet. The hydrolysis degradation mechanism within the tablet is further rationalized through discussion of chemical and physical properties of the matrix components. The sum of this work demonstrates a new analytical workflow for probing and understanding matrix driven degradation in oral compressed tablets utilizing ToF-SIMS imaging.


Subject(s)
Anti-HIV Agents , HIV Infections , Humans , Tenofovir/therapeutic use , Anti-HIV Agents/therapeutic use , Excipients/chemistry , Spectrometry, Mass, Secondary Ion , Tablets/chemistry , HIV Infections/drug therapy
4.
Pharm Res ; 41(1): 141-151, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38040879

ABSTRACT

BACKGROUND & PURPOSE: Different methods have been exploited to generate amorphous solid dispersions (ASDs) of poorly water-soluble drugs. However, the impact of processing methods on drug stability and dissolution hasn't been studied extensively. The purpose of the current study is to investigate the impact of the two common ASD processing methods, hot-melt extrusion (HME) and spray drying, on the chemical/physical stability and supersaturation of Posaconazole (Posa) based ASDs. METHODS & RESULTS: ASDs with 25% drug loading in hydroxypropylmethylcellulose acetate succinate were prepared using HME, and two types of spray dryers, a Procept Sprayer (ASD-Procept) and a Nano Sprayer (ASD-Nano). The relative physical stability of these ASDs upon exposure to heat and crystalline API seeding followed the order: ASD-Nano > ASD-Procept ≈HME. ASD-Procept and ASD-Nano showed similar chemical stability, slightly less stable than HME under 40°C/75%RH. All three ASDs demonstrated similar supersaturation induction times, and de-supersaturation kinetics with or without crystalline seeds. CONCLUSIONS: Posa ASDs prepared via spray drying were chemically less stable compared with HME, which can be attributed to their smaller particle size and hollow structure allowing oxygen penetration. For ASD-Procept and HME, the detailed phase changes involving recrystallization of amorphous Posa and a solid-solid phase transition from Posa Form I to Form Ia during the seed-induced studies were proposed. Similar dissolution and supersaturation-precipitation kinetics of three Posa ASDs indicated that any residual nanocrystals in the bulk ASDs were not enough to induce crystallization to differentiate ASDs made by three processing methods.


Subject(s)
Triazoles , Solubility , Crystallization , Phase Transition , Drug Compounding/methods
5.
J Pharm Sci ; 112(8): 2087-2096, 2023 08.
Article in English | MEDLINE | ID: mdl-36822272

ABSTRACT

Amorphous solid dispersions feature prominently in the approach to mitigate low bioavailability of poorly water-soluble small molecules, particularly in the early development space focusing on toxicity evaluations and clinical studies in normal healthy volunteers, where high exposures are needed to establish safety margins. Spray drying has been the go-to processing route for a number of reasons, including ubiquitous availability of equipment, the ability to accommodate small scale deliveries, and established processes for delivering single phase amorphous material. Active pharmaceutical ingredients (APIs) with low glass transition temperatures (Tg) can pose challenges to this approach. This study addresses multiple routes towards overcoming issues encountered with a low Tg (∼ 12 °C) API during manufacture of a spray dry intermediate (SDI). Even once formulated as an amorphous solid dispersion (ASD) with HPMCAS-LG, the Tg of the ASD was sufficiently low to require the use of non-ideal solvents, posing safety concerns and ultimately resulting in low yields with frequent process interruptions to resolve product build-up. To resolve challenges with spray drying the HPMCAS-L SDI, higher Tg polymers were assessed during spray drying, and an alternative antisolvent precipitation-based process was evaluated to generate co-precipitated amorphous dispersions (cPAD) with either HPMCAS-L or the additional higher Tg polymers. Both approaches were found to be viable alternatives to achieve single phase ASDs while demonstrating comparable in vitro and in vivo bioperformance compared to the SDI. The results of this effort offer valuable considerations for future early-stage activities for ASDs with low Tg APIs.


Subject(s)
Chemistry, Pharmaceutical , Spray Drying , Humans , Drug Compounding/methods , Chemistry, Pharmaceutical/methods , Solubility , Polymers
6.
J Pharm Sci ; 112(3): 708-717, 2023 03.
Article in English | MEDLINE | ID: mdl-36189478

ABSTRACT

Amorphous solid dispersions (ASDs) have been widely utilized to enhance the bioavailability of pharmaceutical drugs with poor aqueous solubility. The role of various excipients on the amorphous drug to crystalline form conversion in ASDs has been widely documented. However, there has been no published study to investigate the role of film coating material on the physical stability of an ASD based tablet formulation, to the best of our knowledge. Here we show that the film coating can potentially have a detrimental impact on the physical stability of spray dried intermediates (SDI) in tablet formulations. The impact of the film coating on the physical stability of SDI was found to be related to the film coat material composition, and an increase in the film coating thickness led to a reduction in the physical stability of SDI in tablets. Oral compressed tablets in which the film coat material was "mixed-in" with the formulation blend showed a similar or worse physical stability than film coated tablets, further underscoring the film coat material impact on physical stability, independent of the film coating process. This study demonstrates a need for careful consideration of the film coat material selection for ASD based pharmaceutical product development.


Subject(s)
Chemistry, Pharmaceutical , Crystallization , Tablets/chemistry , Solubility , Drug Compounding , Drug Stability
7.
Mol Pharm ; 18(12): 4299-4309, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34738825

ABSTRACT

Polymers play an important role in amorphous solid dispersions (ASDs), enhancing stability in the solid state and maintaining supersaturation in aqueous solutions of intrinsically low-water-soluble drug candidates. Hydroxypropyl methylcellulose acetate succinate (HPMCAS) is widely used in ASDs due to its hydrophobic/hydrophilic balance and ionizability of the substituent functionalities. While colloid formation of HPMCAS in solution due to this hydrophobic/hydrophilic balance has been studied, the impact of the polymer conformation (random coil vs aggregated) on drug supersaturation of ASDs is not well understood. To our knowledge, this is the first report where the critical aggregation concentration for three grades of HPMCAS (HF/MF/LF) has been determined via fluorescence spectroscopy using the environment-sensitive probe pyrene. The specific impact of polymer conformation (random coil vs aggregate) on the model drug celecoxib (CLX) has been elucidated with fluorescence quenching and nuclear magnetic resonance (NMR) spectroscopy. A negative deviation of the Stern-Volmer plot indicated that aggregated HPMCAS effectively blocked the quencher's access to CLX. This is further supported by NMR observations, where NMR spectra indicate a larger change of chemical shift of the -NH group of CLX when HPMCAS is above its aggregated concentration, suggesting strong H-bonding interactions between aggregated HPMCAS and CLX. Finally, the supersaturation-precipitation study shows that all three grades of HPMCAS in the aggregated state significantly enhanced CLX supersaturation compared to the nonaggregated state, indicating that polymer aggregation plays a critical role in maintaining drug supersaturation.


Subject(s)
Celecoxib/chemistry , Methylcellulose/analogs & derivatives , Chemical Precipitation , Crystallization , Magnetic Resonance Spectroscopy , Methylcellulose/chemistry , Solubility , Spectrometry, Fluorescence
8.
ACS Appl Bio Mater ; 4(8): 6441-6450, 2021 08 16.
Article in English | MEDLINE | ID: mdl-35006868

ABSTRACT

Hydrophobins are multifunctional, highly surface-active proteins produced in filamentous fungi. Due to their surface-active properties, resistance to degradation, and potential immunological inertness, hydrophobins have been used in many applications such as protein purification, increasing implant biocompatibility, increasing water solubility of insoluble drugs, and foam stabilizers for food products. To further explore surface-active and self-assembly properties of hydrophobins, we evaluated an engineered, recombinant hydrophobin (class II type 1, HFB1) as a potential crystallization inhibitor for maintaining drug supersaturation for an amorphous drug delivery system. A supersaturation-precipitation method was employed utilizing an ultraviolet (UV) fiber optic system for tracking precipitation kinetics of a model drug, flufenamic acid (FA), that was selected due to its low aqueous solubility in its crystalline form. The effectiveness of HFB1 as a crystallization inhibitor was compared with commonly used pharmaceutical grade polymeric crystallization inhibitors. The following polymers were selected to compare with HFB1: methocel (A4C grade), methocel (K15M grade), Kollidon vinylpyrrolidone-vinyl acetate (VA64), and hydroxypropyl methylcellulose acetate succinate (HPMCAS) (MF grade). The supersaturation-precipitation experiments concluded that HFB1 outperformed all polymers tested in this study and can potentially be used as a crystallization inhibitor at significantly lower concentrations in amorphous drug delivery systems. Dynamic light scattering (DLS) and circular dichroism (CD) results suggest a crystallization inhibition mechanism in which HFB1 functions differently depending on whether flufenamic acid is molecularly dispersed but supersaturated relative to its crystalline solubility or it has exceeded its amorphous solubility limit and exists as a phase-separated drug-rich colloid.


Subject(s)
Flufenamic Acid , Methylcellulose , Crystallization , Methylcellulose/chemistry , Pharmaceutical Preparations/chemistry , Polymers/chemistry , Solubility
9.
Mol Pharm ; 17(9): 3567-3580, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32787281

ABSTRACT

Molecular miscibility and homogeneity of amorphous solid dispersions (ASDs) are critical attributes that impact physicochemical stability, bioavailability, and processability. Observation of a single glass transition is utilized as a criterion for good mixing of drug substance and polymeric components but can be misleading and cannot quantitatively analyze the domain size at high resolution. While imaging techniques, on the other hand, can characterize phase separation on the particle surface at the nanometer scale, they often require customized sample preparation and handling. Moreover, a mixed system is not necessarily homogeneous. Compared to the numerous studies that have evaluated the mixing of drug substance and polymer in ASDs, inhomogeneity in the phase compositions has remained significantly underexplored. To overcome the analytical challenge, we have developed a 1H spin diffusion NMR technique to quantify molecular mixing of bulk ASDs at sub-100 nm resolution. It combines relaxation filtering (T2H and T1ρ) that leaves the active pharmaceutical ingredient (API) as the main source of 1H magnetization at the start of spin diffusion to the polymer matrix. A spray-dried nifedipine-poly(vinylpyrrolidone) (Nif-PVP) ASD at a 5 wt % drug loading was a homogeneous reference system that exhibited equilibration of magnetization transfer from API to polymer within a short spin diffusion time of ∼3 ms. While fast initial magnetization transfer proving mixing on the 1 nm scale was also observed in Nif-PVP ASDs prepared by hot-melt extrusion (HME) at 186 °C at a 40 wt % drug loading, incomplete equilibration of peak intensities documented inhomogeneity on the ≥30 nm scale. The nonuniformity was confirmed by the partial inversion of the Nif magnetization in the filter that resulted in an even more pronounced deviation from equilibration and by 1H-13C heteronuclear correlation (HETCOR) NMR. It is consistent with the observed differential 1H spin-lattice relaxation of Nif and PVP as well as a domain structure on the 20 nm scale observed in atomic force microscopy (AFM) images. The incomplete equilibration and differential relaxation were consistently reproduced in a model of two mixed phases of different compositions, e.g., 40 wt % of the ASD with a 15 wt % drug loading and the remaining 60 wt % with a 56 wt % drug loading. Hot-melt extrusion produced more inhomogeneous samples than spray drying for the samples examined in our study. To the best of our knowledge, this spin diffusion NMR method provides currently the highest-resolution quantification of inhomogeneous molecular mixing and phase composition in bulk samples of pharmaceutical dispersions produced with equipment, procedures, and drug loadings that are relevant to industrial drug development.


Subject(s)
Pharmaceutical Preparations/chemistry , Calorimetry, Differential Scanning/methods , Diffusion , Magnetic Resonance Spectroscopy/methods , Nifedipine/chemistry , Polymers/chemistry , Polyvinyls/chemistry , Pyrrolidines/chemistry , Solubility/drug effects
10.
Nat Struct Mol Biol ; 26(7): 592-598, 2019 07.
Article in English | MEDLINE | ID: mdl-31235909

ABSTRACT

Glucagon and insulin maintain blood glucose homeostasis and are used to treat hypoglycemia and hyperglycemia, respectively, in patients with diabetes. Whereas insulin is stable for weeks in its solution formulation, glucagon fibrillizes rapidly at the acidic pH required for solubility and is therefore formulated as a lyophilized powder that is reconstituted in an acidic solution immediately before use. Here we use solid-state NMR to determine the atomic-resolution structure of fibrils of synthetic human glucagon grown at pharmaceutically relevant low pH. Unexpectedly, two sets of chemical shifts are observed, indicating the coexistence of two ß-strand conformations. The two conformations have distinct water accessibilities and intermolecular contacts, indicating that they alternate and hydrogen bond in an antiparallel fashion along the fibril axis. Two antiparallel ß-sheets assemble with symmetric homodimer cross sections. This amyloid structure is stabilized by numerous aromatic, cation-π, polar and hydrophobic interactions, suggesting mutagenesis approaches to inhibit fibrillization could improve this important drug.


Subject(s)
Amyloid/chemistry , Glucagon/chemistry , Amino Acid Sequence , Amyloid/ultrastructure , Humans , Hydrogen Bonding , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Nuclear Magnetic Resonance, Biomolecular , Peptide Fragments/chemistry , Protein Conformation, beta-Strand , Protein Multimerization , Solubility
11.
Anal Chem ; 91(10): 6894-6901, 2019 05 21.
Article in English | MEDLINE | ID: mdl-31009215

ABSTRACT

It has been estimated that approximately 50% of all marketed drug molecules are manufactured and administered in the form of salts, often with the goal of improving solubility, dissolution rate, and efficacy of the drug. However, salt disproportionation during processing or storage is a common adverse effect in these formulations. Due to the heterogeneous nature of solid drug formulations, it is essential to characterize the drug substances noninvasively at micrometer resolution to understand the molecular mechanism of salt disproportionation. However, there is a lack of such capability with current characterization methods. In this study, we demonstrate that stimulated Raman scattering (SRS) microscopy can be used to provide sensitive and quantitative chemical imaging of the salt disproportionation reaction of pioglitazone hydrochloride (PIO-HCl) at a very low drug loading (1% w/w). Our findings illuminate a water mediated pathway of drug disproportionation and highlight the importance of noninvasive chemical imaging in a mechanistic study of solid-state chemical reactions.


Subject(s)
Pioglitazone/analysis , Tablets/analysis , Chemistry, Pharmaceutical/methods , Excipients/chemistry , Hydrogen-Ion Concentration , Least-Squares Analysis , Nonlinear Optical Microscopy/methods , Pioglitazone/chemistry , Stearic Acids/chemistry , Tablets/chemistry
12.
Mol Pharm ; 15(12): 5793-5801, 2018 12 03.
Article in English | MEDLINE | ID: mdl-30362772

ABSTRACT

Localized drug delivery systems (DDSs) provide therapeutic levels of drug agent while mitigating side effects of systemic delivery. These systems offer controlled release over extended periods of time making them attractive therapies. Monitoring drug dissolution is vital for developing safe and effective means of drug delivery. Currently, dissolution characterization methods are limited to bulk analysis and cannot provide dissolution kinetics at high spatial resolution. However, dissolution rates of drug particles can be heterogeneous with influences from many factors. Insights into finer spatiotemporal dynamics of single particle dissolution could potentially improve pharmacokinetic modeling of dissolution for future drug development. In this work, we demonstrate high-resolution chemical mapping of entecavir, a hepatitis B antiviral drug, embedded in a slow release poly(d,l-lactic acid) formulation with stimulated Raman scattering (SRS) microscopy. By tracking the volume change of individual micron-sized drug particles within the polymer matrix, we establish an analytical protocol for quantitatively profiling dissolution of single crystalline particles in implant formulations in an in situ manner.


Subject(s)
Drug Carriers/chemistry , Drug Implants/pharmacokinetics , Drug Liberation , Guanine/analogs & derivatives , Chemistry, Pharmaceutical/methods , Drug Implants/administration & dosage , Guanine/administration & dosage , Guanine/pharmacokinetics , Microscopy/methods , Particle Size , Polyesters/chemistry , Spectrum Analysis, Raman/methods
13.
Pharm Res ; 34(7): 1364-1377, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28455777

ABSTRACT

PURPOSE: Miscibility between the drug and the polymer in an amorphous solid dispersion (ASD) is considered to be one of the most important factors impacting the solid state stability and dissolution performance of the active pharmaceutical ingredient (API). The research described herein utilizes emerging fluorescence-based methodologies to probe (im)miscibility of itraconazole (ITZ)-hydroxypropyl methylcellulose (HPMC) ASDs. METHODS: The ASDs were prepared by solvent evaporation with varying evaporation rates and were characterized by steady-state fluorescence spectroscopy, confocal imaging, differential scanning calorimetry (DSC), and solid state nuclear magnetic resonance (ssNMR) spectroscopy. RESULTS: The size of the phase separated domains for the ITZ-HPMC ASDs was affected by the solvent evaporation rate. Smaller domains (<10 nm) were observed in spray-dried ASDs, whereas larger domains (>30 nm) were found in ASDs prepared using slower evaporation rates. Confocal imaging provided visual confirmation of phase separation along with chemical specificity, achieved by selectively staining drug-rich and polymer-rich phases. ssNMR confirmed the results of fluorescence-based techniques and provided information on the size of phase separated domains. CONCLUSIONS: The fluorescence-based methodologies proved to be sensitive and rapid in detecting phase separation, even at the nanoscale, in the ITZ-HPMC ASDs. Fluorescence-based methods thus show promise for miscibility evaluation of spray-dried ASDs.


Subject(s)
Hypromellose Derivatives/chemistry , Itraconazole/chemistry , Solvents/chemistry , Chemistry, Pharmaceutical , Drug Stability , Fluorescence , Humans , Magnetic Resonance Spectroscopy , Nanostructures , Solubility
14.
AAPS PharmSciTech ; 17(1): 89-98, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26283196

ABSTRACT

Atomic force microscopy (AFM) and modulated differential scanning calorimetry (mDSC) were used to evaluate the extent of mixing of a hot melt extrusion process for producing solid dispersions of copovidone and D-α-tocopherol polyethylene glycol 1000 succinate (TPGS 1000). In addition to composition, extrusion process parameters of screw speed and thermal quench rate were varied. The data indicated that for 10% TPGS and 300 rpm screw speed, the mixing was insufficient to yield a single-phase amorphous material. AFM images of the extrudate cross section for air-cooled material indicate round domains 200 to 700 nm in diameter without any observed alignment resulting from the extrusion whereas domains in extrudate subjected to chilled rolls were elliptical in shape with uniform orientation. Thermal analysis indicated that the domains were predominantly semi-crystalline TPGS. For 10% TPGS and 600 rpm screw speed, AFM and mDSC data were consistent with that of a single-phase amorphous material for both thermal quench rates examined. When the TPGS concentration was reduced to 5%, a single-phase amorphous material was achieved for all conditions even the slowest screw speed studied (150 rpm).


Subject(s)
Calorimetry, Differential Scanning/methods , Drug Compounding/methods , Microscopy, Atomic Force/methods , Pyrrolidines/chemistry , Vinyl Compounds/chemistry , Vitamin E/chemistry , Chemistry, Pharmaceutical/methods , Drug Carriers/chemistry , Hot Temperature , Polymers/chemistry
15.
Mol Pharm ; 9(11): 3396-402, 2012 Nov 05.
Article in English | MEDLINE | ID: mdl-23025556

ABSTRACT

Amorphous solid dispersions of clotrimazole in the polymer Kollidon VA64 were prepared as films in concentrations from 0% to 100% in 10% by weight increments. Nanoindentation was performed on each film at 18% and 49% relative humidity to assess the effect of drug loading and humidity on the mechanical properties of the solid dispersions. Although the addition of clotrimazole to the polymer reduces the glass transition temperature of the system as measured by differential scanning calorimetry, the hardness, reduced elastic modulus, and storage modulus were found to increase to values greater than those of either pure component up to drug loadings of approximately 60% by weight. Further addition of clotrimazole to the system resulted in decreased hardness and moduli with increased drug load. Dynamic vapor sorption of the dispersions shows that the hygroscopicity of the system is reduced as clotrimazole is added to the polymer.


Subject(s)
Clotrimazole/chemistry , Drug Stability , Humidity , Povidone/chemistry , Calorimetry, Differential Scanning , Molecular Structure , Spectroscopy, Fourier Transform Infrared , Wettability
16.
ACS Nano ; 4(1): 181-8, 2010 Jan 26.
Article in English | MEDLINE | ID: mdl-20028097

ABSTRACT

Self-assembly represents a robust and powerful paradigm for the bottom-up construction of nanostructures. Templated condensation of silica precursors on self-assembled nanoscale peptide fibrils with various surface functionalities can be used to mimic biosilicification. This template-defined approach toward biomineralization was utilized for the controlled fabrication of 3D hybrid nanostructures. The peptides MAX1 and MAX8 used herein form networks consisting of interconnected, self-assembled beta-sheet fibrils. We report a study on the structure--property relationship of self-assembled peptide hydrogels where mineralization of individual fibrils through sol--gel chemistry was achieved. The nanostructure and consequent mechanical characteristics of these hybrid networks can be modulated by changing the stoichiometric parameters of the sol--gel process. The physical characterization of the hybrid networks via electron microscopy and small-angle scattering is detailed and correlated with changes in the network mechanical behavior. The resultant high fidelity templating process suggests that the peptide substrate can be used to template the coating of other functional inorganic materials.


Subject(s)
Biomimetics , Mechanical Phenomena , Peptides/chemistry , Silicon Dioxide/chemistry , Hydrogels/chemistry , Microscopy, Electron, Transmission , Rheology , Scattering, Small Angle , X-Ray Diffraction
17.
Biomacromolecules ; 10(9): 2619-25, 2009 Sep 14.
Article in English | MEDLINE | ID: mdl-19663418

ABSTRACT

A design strategy to control the thermally triggered folding, self-assembly, and subsequent hydrogelation of amphiphilic beta-hairpin peptides in a pH-dependent manner is presented. Point substitutions of the lysine residues of the self-assembling peptide MAX1 were made to alter the net charge of the peptide. In turn, the electrostatic nature of the peptide directly influences the solution pH at which thermally triggered hydrogelation is permitted. CD spectroscopy and oscillatory rheology show that peptides of lower net positive charge are capable of folding and assembling into hydrogel material at lower values of pH at a given temperature. The pH sensitive folding and assembling behavior is not only dependent on the net peptide charge, but also on the exact position of substitution within the peptide sequence. TEM shows that these peptides self-assemble into hydrogels that are composed of well-defined fibrils with nonlaminated morphologies. TEM also indicates that fibril morphology is not influenced by making these sequence changes on the hydrophilic face of the hairpins. Rheology shows that the ultimate mechanical rigidity of these peptide hydrogels is dependent on the rate of folding and self-assembly. Peptides that fold and assemble faster afford more rigid gels. Ultimately, this design strategy yielded a peptide MAX1(K15E) that is capable of undergoing thermally triggered hydrogelation at physiological buffer conditions (pH 7.4, 150 NaCl, 37 degrees C).


Subject(s)
Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Peptides/chemistry , Transition Temperature , Hydrogen-Ion Concentration , Mutagenesis, Site-Directed , Phase Transition , Protein Structure, Secondary , Rheology , Static Electricity
18.
Biomacromolecules ; 10(5): 1295-304, 2009 May 11.
Article in English | MEDLINE | ID: mdl-19344123

ABSTRACT

A de novo designed three-stranded beta-sheet (TSS1) has been prepared that undergoes temperature-induced folding and self-assembly to afford a network of beta-sheet rich fibrils that constitutes a mechanically rigid hydrogel. Circular dichroism and infrared spectroscopies show that TSS1 folds and self-assembles into a beta-sheet secondary structure in response to temperature. Rheological measurements show that the resulting hydrogels are mechanically rigid [at pH 9, G' = 1750-9000 Pa, and at pH 7.4, G' = 8500 Pa] and that the storage modulus can be modulated by temperature and peptide concentration. Nanoscale structure analysis by transmission electron microscopy and small angle neutron scattering indicate that the hydrogel network is comprised of fibrils that are about 3 nm in width, consistent with the width of TSS1 in the folded state. A unique property of the TSS1 hydrogel is its ability to shear-thin into a low viscosity gel upon application of shear stress and immediately recover its mechanical rigidity upon termination of stress. This attribute allows the hydrogel to be delivered via syringe to a target site with spatial and temporal resolution. Finally, experiments employing C3H10t1/2 mesenchymal stem cells seeded onto the hydrogel and incubated for 24 h indicate that the TSS1 hydrogel surface is noncytotoxic, supports cell adhesion, and allows cell migration.


Subject(s)
Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Hydrogel, Polyethylene Glycol Dimethacrylate/chemical synthesis , Animals , Cell Survival , Cells, Cultured , Hydrogel, Polyethylene Glycol Dimethacrylate/pharmacology , Hydrogen Bonding , Hydrogen-Ion Concentration , Materials Testing , Mesenchymal Stem Cells/cytology , Mice , Peptides/chemical synthesis , Peptides/chemistry , Protein Folding , Protein Structure, Secondary , Rheology , Surface Properties , Temperature , Time Factors , Viscosity
19.
Biomacromolecules ; 8(10): 3126-34, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17880180

ABSTRACT

The synthesis of poly(methyl methacrylate-co-methacryloxysuccinimide-graft-poly(ethylene glycol)) (PMMA-co-PMASI-g-PEG) via living free radical polymerization provides a convenient route to well-defined amphiphilic graft copolymers having a controllable number of reactive functional groups, variable length PEG grafts, and low polydispersity. These copolymers were shown to form PMMA-core/PEG-shell nanoparticles upon hydrophobic collapse in water, with the hydrodynamic size being defined by the molecular weight of the backbone and the PEG grafts. Functionalization of these polymeric nanoparticles with a 1,4,7,10-tetraazacyclododecanetetraacetic acid (DOTA) ligand capable of chelating radioactive 64Cu nuclei enabled the biodistribution and in vivo positron emission tomography of these materials to be studied and directly correlated to the initial structure. Results indicate that nanoparticles with increasing PEG chain lengths show increased blood circulation and low accumulation in excretory organs, suggesting the possible use of these materials as stealth carriers for medical imaging and systemic administration.


Subject(s)
Copper Radioisotopes/pharmacokinetics , Nanoparticles/chemistry , Positron-Emission Tomography/instrumentation , Positron-Emission Tomography/methods , Animals , Biocompatible Materials/chemistry , Copper/chemistry , Copper Radioisotopes/chemistry , Cryoelectron Microscopy , Female , Free Radicals , Ligands , Methacrylates/chemistry , Mice , Mice, Inbred BALB C , Microscopy, Electron, Transmission , Polyethylene Glycols/chemistry , Polymethyl Methacrylate/chemistry , Rats , Rats, Sprague-Dawley
20.
Proc Natl Acad Sci U S A ; 104(19): 7791-6, 2007 May 08.
Article in English | MEDLINE | ID: mdl-17470802

ABSTRACT

A peptide-based hydrogelation strategy has been developed that allows homogenous encapsulation and subsequent delivery of C3H10t1/2 mesenchymal stem cells. Structure-based peptide design afforded MAX8, a 20-residue peptide that folds and self-assembles in response to DMEM resulting in mechanically rigid hydrogels. The folding and self-assembly kinetics of MAX8 have been tuned so that when hydrogelation is triggered in the presence of cells, the cells become homogeneously impregnated within the gel. A unique characteristic of these gel-cell constructs is that when an appropriate shear stress is applied, the hydrogel will shear-thin resulting in a low-viscosity gel. However, after the application of shear has stopped, the gel quickly resets and recovers its initial mechanical rigidity in a near quantitative fashion. This property allows gel/cell constructs to be delivered via syringe with precision to target sites. Homogenous cellular distribution and cell viability are unaffected by the shear thinning process and gel/cell constructs stay fixed at the point of introduction, suggesting that these gels may be useful for the delivery of cells to target biological sites in tissue regeneration efforts.


Subject(s)
Hydrogels/chemistry , Mesenchymal Stem Cell Transplantation/methods , Peptides/chemistry , Protein Folding , Animals , Cells, Cultured , Kinetics , Mice , Mice, Inbred C3H , Protein Structure, Secondary , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL