Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters








Database
Language
Publication year range
1.
Small ; : e2404894, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39169703

ABSTRACT

Designing highly efficient, stable, and pH-universal perovskites for hydrogen evolution reaction (HER) is urgently needed yet remains a grand challenge. Herein, a titanium-containing strontium ruthenate (SrTi0.5Ru0.5O3, STRO) is developed as an excellent HER electrocatalyst in a wide pH range. The introduction of Ti into SrRuO3 significantly reduces the size of STRO, endowing with a high reactivity that facilitates a deep surface-reconstruction during HER. Furthermore, Sr2+ leaching triggered reconstruction leads to STRO breaking into tiny nanoparticles accompanied by high-valence ruthenium (Ru) species reducing to metallic Ru. The generated active species, increased accessible sites, and improved electrical conductivity greatly boost HER. The reconstructed STRO displays remarkable HER activities with exceptional low overpotentials of 18, 24, and 55 mV at 10 mA cm-2 in 1 m KOH, 0.5 m H2SO4, and 1 m PBS, respectively, surpassing most perovskites reported previously and comparable to or even outperforming that of commercial Pt/C. Moreover, the STRO exhibits excellent stabilities over 200 h in alkaline and acidic media, superior to that of Pt/C. This work not only provides insights into structure reconstruction of perovskites during HER, but also opens new perspectives for developing high-efficiency and pH-universal electrocatalysts for future energy applications.

2.
Inorg Chem ; 62(28): 11207-11214, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37392193

ABSTRACT

Transition metal nitrides are promising electrocatalysts for hydrogen evolution reaction (HER) owing to their Pt-like electronic structure. However, the harsh nitriding conditions greatly limit their large-scale applications. Herein, ultrafine Co3Mo3N-Mo2C (<1 nm)-decorated carbon nanofibers (Co3Mo3N-Mo2C/CNFs) were prepared by electrostatic spinning followed by pyrolysis treatment, in which the MoCo-MOF simultaneously serves as the precursor and nitrogen source. The generated synergistic interactions between Mo2C and Co3Mo3N significantly adjust the electronic structure of Mo2C and afford a fast charge transfer, which endows the resultant hybrid with superior HER electrocatalytic performances. Specifically, the as-obtained Co3Mo3N-Mo2C/CNF delivers a low overpotential of only 76 mV to achieve a current density of 10 mA cm-2 and superior durability with no obvious degradation for 200 h in acidic media. This performance outperforms most of the transition metal-based electrocatalysts reported to date. This work paves a new way for the design of catalysts with ultrasmall size and high efficiency in energy conversion.

3.
Molecules ; 28(11)2023 May 26.
Article in English | MEDLINE | ID: mdl-37298841

ABSTRACT

Developing cost-effective and high-efficiency catalysts for electrocatalytic oxygen evolution reaction (OER) is crucial for energy conversions. Herein, a series of bimetallic NiFe metal-organic frameworks (NiFe-BDC) were prepared by a simple solvothermal method for alkaline OER. The synergistic effect between Ni and Fe as well as the large specific surface area lead to a high exposure of Ni active sites during the OER. The optimized NiFe-BDC-0.5 exhibits superior OER performances with a small overpotential of 256 mV at a current density of 10 mA cm-2 and a low Tafel slope of 45.4 mV dec-1, which outperforms commercial RuO2 and most of the reported MOF-based catalysts reported in the literature. This work provides a new insight into the design of bimetallic MOFs in the applications of electrolysis.


Subject(s)
Metal-Organic Frameworks , Nickel , Electrolysis , Oxygen
4.
Small ; 19(36): e2301294, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37127885

ABSTRACT

Nickel-iron based hydroxides have been proven to be excellent oxygen evolution reaction (OER) electrocatalysts, whereas they are inactive toward hydrogen evolution reaction (HER), which severely limits their large-scale applications in electrochemical water splitting. Herein, a heterostructure consisted of NiFeV hydroxide and iron oxide supported on iron foam (NiFeV@FeOx /IF) has been designed as a highly efficient bifunctional (OER and HER) electrocatalyst. The V doping and intimate contact between NiFeV hydroxide and FeOx not only improve the entire electrical conductivity of the catalyst but also afford more high-valence Ni which serves as active sites for OER. Meanwhile, the introduction of V and FeOx reduces the electron density on lattice oxygen, which greatly facilitates desorption of Hads . All of these endow the NiFeV@FeOx /IF with exceptionally low overpotentials of 218 and 105 mV to achieve a current density of 100 mA cm-2 for OER and HER, respectively. More impressively, the electrolyzer requires an ultra-low cell voltage of 1.57 V to achieve 100 mA cm-2 and displays superior electrochemical stability for 180 h, which outperforms commercial RuO2 ||Pt/C and most of the representative catalysts reported to date. This work provides a unique route for developing high-efficiency electrocatalyst for overall water splitting.

5.
Dalton Trans ; 52(20): 6906-6914, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37158418

ABSTRACT

The preparation of a high-efficiency and durable electrocatalyst for the alkaline hydrogen evolution reaction (HER) is essential for realizing renewable energy technologies. Herein, a series of La0.5Sr0.5CoO3-δ perovskites with different amounts of Cu cations substituting at B-sites were fabricated for the HER. Specifically, the optimized La0.5Sr0.5Co0.8Cu0.2O3-δ (LSCCu0.2) exhibits a significantly enhanced electrocatalytic activity with an ultralow overpotential of 154 mV at 10 mA cm-2 in 1.0 M KOH, which is reduced by 125 mV compared with that of pristine La0.5Sr0.5CoO3-δ (LSC, 279 mV). It also delivers a robust durability with no obvious degradation after 150 h. Impressively, the HER activity of LSCCu0.2 is superior to that of commercial Pt/C at large current densities (>270 mA cm-2). XPS analysis indicates that Co2+ ions replaced by an appropriate amount of Cu2+ ions can increase the proportion of Co3+ and generate high content of oxygen vacancies in LSC, which leads to an increased electrochemically active surface area, thereby greatly facilitating the HER. This work offers a simple way for the rational design of cost-effective and highly efficient catalysts, which may be extended to other Co-based perovskite oxides for the alkaline HER.

6.
Inorg Chem ; 62(20): 8001-8009, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37167416

ABSTRACT

The successful preparation of a perovskite-based heterostructure is important for broadening the applications of perovskites in the field of electrocatalysis, especially in a hydrogen evolution reaction (HER). Nevertheless, the limited active sites of perovskites severely hindered the HER properties. Herein, an in situ exsolution method was used to construct a nanocomposite based on V-doped BaCoO3-δ decorated with Ba3(VO4)2 (BVCO19) for alkaline HER. The exsolved Ba3(VO4)2 can induce more Co4+ ions on BaCoO3-δ, which serves as active sites for the release of H2. Meanwhile, by regulating the valency of V and Co species, the catalyst can reach a charge balance by generating more oxygen vacancies, which greatly facilitates the adsorption and dissociation of H2O molecules. The synergistic effect between the oxygen vacancies and high-valence Co4+ leads to an enhanced HER performance of BVCO19. The as-obtained catalyst delivers a low overpotential of 194 mV at 10 mA cm-2 as well as impressive stability for 100 h in alkaline media, which outperforms pristine BaCoO3-δ and most of the nonprecious-based perovskite oxides. This work provides new insights into the preparation of perovskite-based heterostructure for boosting HER.

7.
J Colloid Interface Sci ; 567: 165-170, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32045738

ABSTRACT

Rational design of low-cost and high-efficient non-precious-metal catalysts for oxygen reduction reaction (ORR) has drawn tremendous attention. Herein, we report a facile template-sacrificing strategy to synthesize N-doped hierarchically porous graphitic layers wrapped iron carbide (Fe3C@NPGL). Cost-effective graphitic carbon nitride (g-C3N4) combined with dopamine were used as dual-nitrogen-source which provide more active sites for ORR. By virtue of abundant Fe-N coordination sites and unique porous structure of NPGL, the as-fabricated Fe3C@NPGL exhibits excellent ORR performances with a half-wave potential of 0.87 V, a limited current density of 6.3 mA cm-2, and a low peroxide yield (<2.5%), which outperform commercial Pt/C and most of the reported non-precious-metal catalysts. This work provides a feasible strategy to design novel ORR electrocatalysts.

SELECTION OF CITATIONS
SEARCH DETAIL