Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Arthritis Rheumatol ; 66(9): 2621-7, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24891336

ABSTRACT

OBJECTIVE: Autoinflammatory disorders are caused by a primary dysfunction of the innate immune system. Among these disorders are hereditary recurrent fevers, which are characterized by recurrent episodes of fever and inflammatory manifestations affecting multiple tissues. Hereditary recurrent fevers often lack objective diagnostic criteria, thereby hampering the identification of disease-causing genes. This study was undertaken to identify a gene responsible for hereditary recurrent fevers. METHODS: Copy number variations and point mutations were sought by array-comparative genomic hybridization and polymerase chain reaction sequencing, respectively. Serum cytokine levels were measured using Luminex technology. The effect of TNFRSF11A molecular defects on NF-κB signaling in cells expressing wild-type and mutated forms of the receptor was evaluated by luciferase assay. RESULTS: A patient with multiple congenital anomalies and hereditary recurrent fever was found to carry a de novo heterozygous complex chromosomal rearrangement encompassing a duplication of TNFRSF11A, a gene known to regulate fever in rodents. We also identified a heterozygous frameshift mutation (p.Met416Cysfs*110) in TNFRSF11A in a mother and daughter with isolated hereditary recurrent fever. This mutation was associated with increased secretion of several inflammatory cytokines (tumor necrosis factor α [TNFα], interleukin-18 [IL-18], IL-1 receptor antagonist, interferon-γ) and altered the biologic effects of the receptor on NF-κB signaling. The disease in the patients described herein exhibits striking clinical similarities to TNF receptor-associated periodic syndrome, another hereditary recurrent fever involving a gene of the same family (TNFRSF1A). CONCLUSION: The involvement of TNFRSF11A in hereditary recurrent fever highlights the key role of this receptor in innate immunity. The present results also suggest that TNFRSF11A screening could serve as a new diagnostic test for autoinflammatory disorders.


Subject(s)
DNA Copy Number Variations , Hereditary Autoinflammatory Diseases/genetics , Immunity, Innate/genetics , Mutation , Receptor Activator of Nuclear Factor-kappa B/genetics , Adult , Child, Preschool , Female , Genotype , Hereditary Autoinflammatory Diseases/metabolism , Humans , Male , Middle Aged , Receptor Activator of Nuclear Factor-kappa B/metabolism
2.
PLoS One ; 8(7): e69757, 2013.
Article in English | MEDLINE | ID: mdl-23894535

ABSTRACT

OBJECTIVES: TNFRSF1A is involved in an autosomal dominant autoinflammatory disorder called TNFR-associated periodic syndrome (TRAPS). Most TNFRSF1A mutations are missense changes and, apart from those affecting conserved cysteines, their deleterious effect remains often questionable. This is especially true for the frequent R92Q mutation, which might not be responsible for TRAPS per se but represents a susceptibility factor to multifactorial inflammatory disorders. This study investigates TRAPS pathophysiology in a family exceptional by its size (13 members) and compares the consequences of several mutations affecting arginine 92. METHODS: TNFRSF1A screening was performed by PCR-sequencing. Comparison of the 3-dimensional structure and electrostatic properties of wild-type and mutated TNFR1 proteins was performed by in silico homology modeling. TNFR1 expression was assessed by FACS analysis, western blotting and ELISA in lysates and supernatants of HEK293T cells transiently expressing wild-type and mutated TNFR1. RESULTS: A TNFRSF1A heterozygous missense mutation, R92W (c.361C>T), was shown to perfectly segregate with typical TRAPS manifestations within the family investigated (p<5.10(-4)). It was associated with very high disease penetrance (0.9). Prediction of its impact on the protein structure revealed local conformational changes and alterations of the receptor electrostatic properties. R92W also impairs the TNFR1 expression at the cell surface and the levels of soluble receptor. Similar results were obtained with R92P, another mutation previously identified in a very small familial form with incomplete penetrance and variable expressivity. In contrast, TNFR1-R92Q behaves like the wild-type receptor. CONCLUSIONS: These data demonstrate the pathogenicity of a mutation affecting arginine 92, a residue whose involvement in inflammatory disorders is deeply debated. Combined with previous reports on arginine 92 mutations, this study discloses an unusual situation in which different amino acid substitutions at the same position in the protein are associated with a clinical spectrum bridging Mendelian to multifactorial conditions.


Subject(s)
Hereditary Autoinflammatory Diseases/metabolism , Receptors, Tumor Necrosis Factor, Type I/metabolism , Adolescent , Adult , Arginine/chemistry , Arginine/genetics , Blotting, Western , Child , Enzyme-Linked Immunosorbent Assay , Female , Flow Cytometry , Genotype , Hereditary Autoinflammatory Diseases/genetics , Humans , Male , Mutation, Missense/genetics , Pedigree , Polymerase Chain Reaction , Protein Transport , Receptors, Tumor Necrosis Factor, Type I/chemistry , Receptors, Tumor Necrosis Factor, Type I/genetics , Static Electricity , Young Adult
3.
PLoS One ; 8(7): e68431, 2013.
Article in English | MEDLINE | ID: mdl-23844200

ABSTRACT

BACKGROUND: Familial Mediterranean fever (FMF) is an autosomal recessive autoinflammatory disorder due to MEFV mutations and one of the most frequent Mediterranean genetic diseases. The observation of many heterozygous patients in whom a second mutated allele was excluded led to the proposal that heterozygosity could be causal. However, heterozygosity might be coincidental in many patients due to the very high rate of mutations in Mediterranean populations. OBJECTIVE: To better delineate the pathogenicity of heterozygosity in order to improve genetic counselling and disease management. METHODS: Complementary statistical approaches were used: estimation of FMF prevalence at population levels, genotype comparison in siblings from 63 familial forms, and genotype study in 557 patients from four Mediterranean populations. RESULTS: At the population level, we did not observe any contribution of heterozygosity to disease prevalence. In affected siblings of patients carrying two MEFV mutations, 92% carry two mutated alleles, whereas 4% are heterozygous with typical FMF diagnosis. We demonstrated statistically that patients are more likely to be heterozygous than healthy individuals, as shown by the higher ratio heterozygous carriers/non carriers in patients (p<10(-7)-p<0.003). The risk for heterozygotes to develop FMF was estimated between 2.1 × 10(-3) and 5.8 × 10(-3) and the relative risk, as compared to non carriers, between 6.3 and 8.1. CONCLUSIONS: This is the first statistical demonstration that heterozygosity is not responsible for classical Mendelian FMF per se, but constitutes a susceptibility factor for clinically-similar multifactorial forms of the disease. We also provide a first estimate of the risk for heterozygotes to develop FMF.


Subject(s)
Cytoskeletal Proteins/genetics , Familial Mediterranean Fever/genetics , Genetic Predisposition to Disease , Heterozygote , Mutation , Alleles , Ethnicity/genetics , Familial Mediterranean Fever/epidemiology , Gene Frequency , Humans , Pedigree , Prevalence , Pyrin , Retrospective Studies , Risk , Siblings
4.
Arthritis Rheum ; 63(5): 1459-64, 2011 May.
Article in English | MEDLINE | ID: mdl-21538323

ABSTRACT

OBJECTIVE: To gain insight into the molecular bases of genetically unexplained periodic fever syndromes (PFS) by screening NLRP12, a gene in which only a nonsense and a splice site mutation have so far been identified, and to assess the functional consequences of the identified missense variation. METHODS: NLRP12 was screened for mutations by direct sequencing. Functional assays were performed in HEK 293T cells stably expressing the proapoptotic protein ASC and procaspase 1, in order to determine the effects of normal and mutated NLRP12 proteins on speck formation, caspase 1 signaling, and NF-κB activation. RESULTS: A heterozygous NLRP12 missense mutation involving a CpG site (c.1054C>T; p.Arg352Cys) was identified in exon 3, which encodes the nucleotide-binding site (NBS) of the protein, in 2 patients from different countries and carrying different NLRP12 haplotypes. The mutation, which does not alter the inhibitory effect of NLRP12 on NF-κB activation, increases speck formation and activates caspase 1 signaling. To define this new class of PFS, we propose the term NLRP12-associated disorders (NLRP12AD). CONCLUSION: Given the rarity of known NLRP12-associated disorders, the identification of this NLRP12 molecular defect contributes to the delineation of the clinical spectrum associated with mutations in this gene and highlights the importance of screening NLRP12 in patients presenting with unexplained PFS. This study also demonstrates, by means of functional assays, the deleterious effect of this recurrent missense mutation; the gain of function for speck formation and caspase 1 signaling associated with this NBS mutation is consistent with the inflammatory phenotype of PFS.


Subject(s)
Hereditary Autoinflammatory Diseases/genetics , Intracellular Signaling Peptides and Proteins/genetics , Mutation, Missense/genetics , Humans , Phenotype
5.
Arthritis Rheum ; 62(4): 1176-85, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20131254

ABSTRACT

OBJECTIVE: To gain insight into the pathophysiology of an atypical familial form of an autoinflammatory disorder, characterized by autosomal-dominant sensorineural hearing loss, systemic inflammation, increased secretion of interleukin-1beta (IL-1beta), and the absence of any cutaneous manifestations, and to assess the functional consequences of a missense mutation identified in the leucine-rich repeat (LRR) domain of NLRP3. METHODS: Microsatellite markers were used to test the familial segregation of the NLRP3 locus with the disease phenotype. All NLRP3 exons were screened for mutations by sequencing. Functional assays were performed in HEK 293T cells to determine the effects of mutated (versus normal) NLRP3 proteins on NF-kappaB activation, caspase 1 signaling, and speck formation. RESULTS: A heterozygous NLRP3 missense mutation (p.Tyr859Cys) was identified in exon 6, which encodes the LRR domain of the protein. This mutation was found to segregate with the disease phenotype within the family, and had a moderate activating effect on speck formation and procaspase 1 processing and did not alter the inhibitory properties of NLRP3 on NF-kappaB signaling. CONCLUSION: This report is the first to describe a familial form of a cryopyrinopathy associated with a mutation outside of exon 3 of NLRP3. This finding, together with the known efficacy of anti-IL-1 treatments in these disorders, underlines the importance of screening all exons of NLRP3 in patients who present with atypical manifestations. In addition, the gain of function associated with this mutation in terms of activation of caspase 1 signaling was consistent with the observed inflammatory phenotype. Therefore, this study of the functional consequences of an LRR mutation sheds new light on the clinical relevance of in vitro assays.


Subject(s)
Carrier Proteins/genetics , Germ-Line Mutation , Hereditary Autoinflammatory Diseases/genetics , Amino Acid Sequence , Cell Line , Cytokines/blood , DNA/genetics , DNA Primers , Female , Genetic Variation , Hereditary Autoinflammatory Diseases/physiopathology , Humans , Interleukin-1beta/blood , Kidney/embryology , Male , Monocytes/pathology , Mothers , Mutation, Missense , NLR Family, Pyrin Domain-Containing 3 Protein , Plasmids , Siblings
SELECTION OF CITATIONS
SEARCH DETAIL