Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Water Res ; 267: 122505, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39378730

ABSTRACT

The KrCl* excimer lamp (UV222) is a promising alternative of low-pressure mercury lamp (UV254) for UV-based advanced oxidation processes (UV-AOPs), because it is mercury-free and has high photon energy. But there lacks a comprehensive assessment of UV222-AOPs based on different radicals. Herein, the properties (e.g., oxidant decay and innate radical quantum yield), and micropollutant degradation, were comprehensively studied for representative oxidants (i.e., hydrogen peroxide, persulfate (PDS), monochloramine, and free active chlorine (FAC)) under UV222 irradiation. UV222 outperformed UV254 for the activation of oxidants with 2.6-14.4 times fluence-based kinetic constant (kF). The main reason of enhanced activation varied with oxidants: higher UV absorbance for H2O2, higher innate quantum yield for monochloramine and FAC, and both reasons for PDS. Overall, PDS was the optimum oxidant under UV222 for the degradation of 8 representative micropollutants because of effective promotion of radical formation, as confirmed by radical competitive kinetics and modeling simulations. In real water, UV222/PDS still show advantages than UV254/PDS in terms of micropollutant elimination efficacy (3.2-5.3 times) and energy consumption (33.9 %-57.6 % lower) though it was more inhibited by water constituents via competing for UV222 photons. This study fills gaps in photochemistry knowledge and will facilitate engineering practice of UV222-AOPs.

2.
Water Res ; 268(Pt A): 122560, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39388776

ABSTRACT

The KrCl-excimer lamp, emitting far-UVC light at 222 nm (UV222), offers a promising alternative to conventional UVC light at 254 nm (UV254) for the photolysis of organic pollutants and the activation of radical sensitizers. This study was aimed to investigate the efficiencies of UV222 in the treatment of halogenated aromatics, focusing on its performance in degradation, dechlorination and detoxification. Chlorophenols, representative recalcitrant and toxic halogenated aromatics, were used as target pollutants. The pathways of direct photolysis, photooxidation and photoreduction under UV222 illumination were compared. UV222 outperformed UV254 in photolyzing chlorophenols (1.4-34.1 times faster), especially protonated chlorophenols, due to substantially higher UV absorption (17.1-108.0 times) and quantum yields (2.1-3.4 times). The quantum yields of chlorophenols were influenced by the inducive electron-withdrawing effect of Cl-substitutes. Moreover, UV222 improved the dechlorination of chlorophenols to 95 % compared to 60 % by UV254. The introduction of radical sensitizer (e.g., H2O2, nitrate, and sulfite) reduced 4-chlorophenol photolysis by competing for UV222 absorption, though the sensitizers partially increased radical oxidation via generating •OH or eaq-. UV222 photolysis of 4-chlorophenol increased the toxicity by 88.6 times through forming toxic intermediates (e.g., hydroquinone and resorcinol). Notably, •OH and eaq- (i.e., UV222/H2O2 and UV222/sulfite) increased the dechlorination and •OH (i.e., UV222/H2O2) detoxified the mixture solution. Moreover, UV222 photolysis remained effective for 4-chlorophenol removal in real paper-mill wastewater, indicating the potential application of KrCl* lamp UV222.

3.
Environ Sci Technol ; 2024 Oct 14.
Article in English | MEDLINE | ID: mdl-39401937

ABSTRACT

Electrocatalytic hydrodechlorination is a promising approach for simultaneous pollutant purification and valorization. However, the lack of electrocatalysts with high catalytic activity and selectivity limits its application. Here, we propose a palladium-palladium oxide (Pd-PdO) heterostructure for efficient electrocatalytic hydrodechlorination of recalcitrant chlorophenols and selective formation of phenol with superior Pd-mass activity (1.35 min-1 mgPd-1), which is 4.4 times of commercial Pd/C and about 10-100 times of reported Pd-based catalysts. The Pd-PdO heterostructure is stable in real water matrices and achieves selective phenol recovery (>99%) from the chlorophenol mixture and efficient detoxification along chlorophenol removal. Experimental results and computational modeling reveal that the adsorption/desorption behaviors of zerovalent Pd and PdO sites in the Pd-PdO heterostructure are optimized and a synergy is realized to promote atomic hydrogen (H*) generation, transfer, and utilization: H* is efficiently generated at zerovalent Pd sites, transferred to PdO sites, and eventually consumed in the dechlorination reaction at PdO sites. This work provides a promising strategy to realize the synergy of Pd with different valence states in the metal-metal oxide heterostructure for simultaneous decontamination, detoxification, and resource recovery from halogenated organic pollutants.

4.
Environ Res ; : 120135, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39393456

ABSTRACT

The proliferation of harmful algal blooms results in adverse impacts on aquatic ecosystems and public health. Early warning system monitors algal bloom occurrences and provides management strategies for promptly addressing high-concentration algal blooms following their occurrence. In this study, we aimed to develop a proactive prediction model for cyanobacterial alert levels to enable efficient decision-making in management practices. We utilized 11 years of water quality, hydrodynamic, and meteorological data from a reservoir that experiences frequent harmful cyanobacterial blooms in summer. We used these data to construct a deep-learning model, specifically a 1D convolution neural network (1D-CNN) model, to predict cyanobacterial alert levels one week in advance. However, the collected distribution of algal alert levels was imbalanced, leading to the biased training of data-driven models and performance degradation in model predictions. Therefore, an adaptive synthetic sampling method was applied to address the imbalance in the minority class data and improve the predictive performance of the 1D-CNN. The adaptive synthetic sampling method resolved the imbalance in the data during the training phase by incorporating an additional 156 and 196 data points for the caution and warning levels, respectively. The selected optimal 1D-CNN model with a filter size of 5 and comprising 16 filters achieved training and testing prediction accuracies of 97.3% and 85.0%, respectively. During the test phase, the prediction accuracies for each algal alert level (L-0, L-1, and L-2) were 89.9%, 79.2%, and 71.4%, respectively, indicating reasonably consistent predictive results for all three alert levels. Therefore, the use of synthetic data addressed data imbalances and enhanced the predictive performance of the data-driven model. The reliable forecasts produced by the improved model can support the development of management strategies to mitigate harmful algal blooms in reservoirs and can aid in building an early warning system to facilitate effective responses.

5.
Sci Rep ; 14(1): 22551, 2024 Sep 29.
Article in English | MEDLINE | ID: mdl-39343798

ABSTRACT

This study aimed to investigate the impact of various cleaning solutions on the geometry, roughness, gloss, hardness, and flexural strength of 3D-printed zirconia. Cleaning solutions, including isopropyl alcohol (IPA, 99.9%), ethyl alcohol (EtOH, 99.9%), and tripropylene glycol monomethyl ether (TPM, ≥ 97.5%), were diluted to a concentration of 70% and categorized into six groups: IPA99, EtOH99, TPM97, IPA70, EtOH70, and TPM70. Zirconia discs, printed via digital light processing, were sintered after cleaning. The geometry, roughness, gloss, hardness, and flexural strength were analyzed. Statistical analysis was performed using one-way ANOVA with Tukey's post hoc test (p < 0.05). The thickness of TPM70 was the highest. The diameter of TPM70 was significantly larger than that of EtOH99 and IPA70 (p < 0.05). The weight of the TPM groups was significantly higher than that of IPA70 (p < 0.05). The roughness Ra of TPM70 was significantly greater than that of IPA99, EtOH99, and EtOH70 (p < 0.05). The differences in surface gloss, hardness, and flexural strength among the different groups were not statistically significant (p > 0.05). Different cleaning solutions did not affect the surface gloss, hardness, and flexural strength of 3D-printed zirconia. High and low concentrations of the same cleaning solution did not affect the surface gloss, hardness, and flexural strength. IPA70, TPM97, and EtOH can be considered viable post-printing cleaning alternatives to the traditional gold standard, IPA99.

6.
Biofabrication ; 16(4)2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39116895

ABSTRACT

Vital pulp therapy (VPT) has gained prominence with the increasing trends towards conservative dental treatment with specific indications for preserving tooth vitality by selectively removing the inflamed tissue instead of the entire dental pulp. Although VPT has shown high success rates in long-term follow-up, adverse effects have been reported due to the calcification of tooth canals by mineral trioxide aggregates (MTAs), which are commonly used in VPT. Canal calcification poses challenges for accessing instruments during retreatment procedures. To address this issue, this study evaluated the mechanical properties of dural substitute intended to alleviate intra-pulp pressure caused by inflammation, along with assessing the biological responses of human dental pulp stem cells (hDPSCs) and human umbilical vein endothelial cells (HUVECs), both of which play crucial roles in dental pulp. The study examined the application of dural substitutes as pulp capping materials, replacing MTA. This assessment was conducted using a microfluidic flow device model that replicated the blood flow environment within the dental pulp. Computational fluid dynamics simulations were employed to ensure that the fluid flow velocity within the microfluidic flow device matched the actual blood flow velocity within the dental pulp. Furthermore, the dural substitutes (Biodesign; BD and Neuro-Patch; NP) exhibited resistance to penetration by 2-hydroxypropyl methacrylate (HEMA) released from the upper restorative materials and bonding agents. Finally, while MTA increased the expression of angiogenesis-related and hard tissue-related genes in HUVEC and hDPSCS, respectively, BD and NP did not alter gene expression and preserved the original characteristics of both cell types. Hence, dural substitutes have emerged as promising alternatives for VPT owing to their resistance to HEMA penetration and the maintenance of stemness. Moreover, the microfluidic flow device model closely replicated the cellular responses observed in live pulp chambers, thereby indicating its potential use as anin vivotesting platform.


Subject(s)
Dental Pulp , Human Umbilical Vein Endothelial Cells , Humans , Dental Pulp/cytology , Dental Pulp Capping , Lab-On-A-Chip Devices , Stem Cells/cytology , Stem Cells/metabolism , Pulp Capping and Pulpectomy Agents/chemistry , Pulp Capping and Pulpectomy Agents/pharmacology , Dura Mater
7.
Environ Sci Technol ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39135318

ABSTRACT

Vacuum-UV (185 nm, VUV) is widely applied to polish reverse osmosis permeate (ROP), such as the production of electronics-grade ultrapure water. In this study, the VUV oxidation of acetaldehyde, a common carbonyl in ROP, was found to be influenced by anions even at low concentrations. Interestingly, the influencing extent and mechanism varied depending on the anions. Bicarbonate minimally affected the VUV-photon absorption and •OH consumption, but at 5000 µg-C·L-1, it decreased the degradation of acetaldehyde by 58.7% possibly by scavenging organic radicals or other radical chain reactions. Nitrate strongly competed for VUV-photon absorption and •OH scavenging through the formation of nitrite, and at 500 µg-N·L-1, it decreased the removal rate of acetaldehyde degradation by 71.2% and the mineralization rate of dissolved organic carbon by 53.4%. Chloride competed for VUV-photon absorption and also generated reactive chlorine species, which did not affect acetaldehyde degradation but influenced the formation of organic byproducts. The radical chain reactions or activation of anions under VUV irradiation could compensate for the decrease in oxidation performance and need further investigation. In real ROPs, the VUV oxidation of acetaldehyde remained efficient, but mineralization was hindered due to nitrate and chloride anions. This study deepens the understanding of the photochemistry and feasibility of VUV in water with low concentrations of anions.

8.
J Dent Sci ; 19(3): 1783-1791, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39035315

ABSTRACT

Background/purpose: The retrograde filling material, particularly mineral trioxide aggregate (MTA) employed in apicoectomy, should possess high antibacterial efficacy and osteogenic potential. We evaluated the antibacterial efficacy, biocompatibility, and osteogenic potential following the addition of silver nanoparticles (AgNPs) and calcium fluoride (CaF2) in retrograde filling material of MTA. Materials and methods: MTA was mixed with four different solvents. Group 1 (G1): distilled water, Group 2 (G2): 50 ppm AgNPs, Group 3 (G3): 1 wt% CaF2, and Group 4 (G4): 50 ppm AgNPs and 1 wt% CaF2. The pH variation of each group was monitored, while the surface roughness was measured. The antibacterial efficacy against Enterococcus faecalis (E. faecalis) and the viability of murine pre-osteoblast (MC3T3) were evaluated for each group using colorimetric assays. The gene expression levels of osteogenic potential marker (OCN, ALPL, and RUNX2) in MC3T3 cells for each group were quantified using real-time-qPCR. Statistical analysis was performed at α = 0.05 level of significance. Results: When comparing the levels of antibacterial efficacy, the order of effectiveness was G4>G2>G3>G1 (P < 0.05). In the cell viability test, owing to MTA-eluted growth medium having a positive effect on MC3T3 cell proliferation, G1-4 exhibited a statistically increased cell viability compared to the control (P < 0.05). However, G2-4 did not result in a statistically significant difference when compared to G1 (P < 0.05). Moreover, G4 exhibited the highest gene expression among the four groups (P < 0.05). Conclusion: The addition of AgNPs and CaF2 to MTA could be a promising option for use as a new retrograde filling material.

9.
J Dent Sci ; 19(3): 1653-1666, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39035317

ABSTRACT

Background/purpose: In the field of conservative dentistry and endodontics, mineral trioxide aggregate (MTA), commonly used, possesses advantages such as biocompatibility, antimicrobial properties and osteogenic potential. This study investigated the feasibility of utilizing membrane form mineral trioxide aggregate (MTA) as a barrier membrane in guided bone regeneration (GBR) procedures. Materials and methods: Membranes were electrospun from three different formulations: 15 w/v% Polycaprolactone (PCL), 13 w/v% PCL + 2 w/v% MTA (2MTA), and 11 w/v% PCL + 4 w/v% MTA (4MTA). Physicochemical and mechanical properties of the electrospun membrane were compared, encompassing parameters such as surface morphology, fiber diameter distribution, chemical composition, phase identification, tensile stress, pH variation, and water contact angle. Moreover, the antimicrobial properties against of the electrospun membranes were assessed through direct exposure to streptococcus aureus (S. aureus) and candida albicans (C. albicans). Additionally, on the 7th day, biocompatibility and cell attachment were investigated with respect to L929 (fibroblast) and MC3T3 (pre-osteoblast) cells. Inhibition of L929 cell infiltration and the expression of osteogenic related genes including osteocalcin (OCN), alkaline phosphatase (ALP), and runt related transcription factor 2 (RUNX2) in MC3T3 cells on 7th and 14th days were also investigated. Results: PCL, 2MTA, and 4MTA exhibited no statistically differences in fiber diameter distribution and tensile stress. However, as the MTA content increased, wettability and pH also increased. Due to the elevated pH, 4MTA demonstrated the lowest viability S.aureus and C.albicans. All membranes were highly biocompatibility and promoted cell attachment, while effectively preventing L929 cell infiltration. Lastly 4MTA showed increase in OCN, ALP, and RUNX2 expression on both 7th and 14th day. Conclusion: The membrane form MTA possessed characteristics essential for a novel barrier membrane.

10.
Environ Sci Technol ; 58(26): 11649-11660, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38872439

ABSTRACT

Brominated byproducts and toxicity generation are critical issues for ozone application to wastewater containing bromide. This study demonstrated that ultraviolet/ozone (UV/O3, 100 mJ/cm2, 1 mg-O3/mg-DOC) reduced the cytotoxicity of wastewater from 14.2 mg of pentol/L produced by ozonation to 4.3 mg of pentol/L (1 mg/L bromide, pH 7.0). The genotoxicity was also reduced from 1.65 to 0.17 µg-4-NQO/L by UV/O3. Compared with that of O3 alone, adsorbable organic bromine was reduced from 25.8 to 5.3 µg/L by UV/O3, but bromate increased from 32.9 to 71.4 µg/L. The UV/O3 process enhanced the removal of pre-existing precursors (highly unsaturated and phenolic compounds and poly aromatic hydrocarbons), while new precursors were generated, yet the combined effect of UV/O3 on precursors did not result in a significant change in toxicity. Instead, UV radiation inhibited HOBr concentration through both rapid O3 decomposition to reduce HOBr production and decomposition of the formed HOBr, thus suppressing the AOBr formation. However, the hydroxyl radical-dominated pathway in UV/O3 led to a significant increase of bromate. Considering both organic bromine and bromate, the UV/O3 process effectively controlled both cytotoxicity and genotoxicity of wastewater to mammalian cells, even though an emphasis should be also placed on managing elevated bromate. Futhermore, other end points are needed to evaluate the toxicity outcomes of the UV/O3 process.


Subject(s)
Bromine , Wastewater , Bromine/chemistry , Bromine/toxicity , Bromates/chemistry , Photochemical Processes , Ultraviolet Rays , Ozone/chemistry , Water Purification/methods , Wastewater/toxicity , Mammals , Animals , CHO Cells , Cricetulus
11.
Biomed Eng Lett ; 14(3): 605-616, 2024 May.
Article in English | MEDLINE | ID: mdl-38645591

ABSTRACT

Wound healing involves a complex and dynamic interplay among various cell types, cytokines, and growth factors. Macrophages and transforming growth factor-ß1 (TGF-ß1) play an essential role in different phases of wound healing. Cold atmospheric plasma has a wide range of applications in the treatment of chronic wounds. Hence, we aimed to investigate the safety and efficacy of a custom-made plasma device in a full-thickness skin defect mouse model. Here, we investigated the wound tissue on days 6 and 12 using histology, qPCR, and western blotting. During the inflammation phase of wound repair, macrophages play an important role in the onset and resolution of inflammation, showing decreased F4/80 on day 6 of plasma treatment and increased TGF-ß1 levels. The plasma-treated group showed better epidermal epithelialization, dermal fibrosis, collagen maturation, and reduced inflammation than the control group. Our findings revealed that floating electrode-dielectric barrier discharge (FE-DBD)-based atmospheric-pressure plasma promoted significantly faster wound healing in the plasma-treated group than that in the control group with untreated wounds. Hence, plasma treatment accelerated wound healing processes without noticeable side effects and suppressed pro-inflammatory genes, suggesting that FE-DBD-based plasma could be a potential therapeutic option for treating various wounds.

12.
Water Res ; 255: 121533, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38569359

ABSTRACT

Low-pressure mercury lamps emitting at 254 nm (UV254) are used widely for disinfection. However, subsequent exposure to visible light results in photoreactivation of treated bacteria. This study employed a krypton chloride excimer lamp emitting at 222 nm (UV222) to inactivate E. coli. UV222 and UV254 treatment had similar E. coli-inactivation kinetics. Upon subsequent irradiation with visible light, E. coli inactivated by UV254 was reactivated from 2.71-log to 4.75-log, whereas E. coli inactivated by UV222 showed negligible photoreactivation. UV222 treatment irreversibly broke DNA strands in the bacterium, whereas UV254 treatment primarily formed nucleobase dimers. Additionally, UV222 treatment caused cell membrane damage, resulting in wizened, pitted cells and permeability changes. The damage to the cell membrane was mainly due to the photolysis of proteins and lipids by UV222. Furthermore, the photolysis of proteins by UV222 destroyed enzymes, which blocked photoreactivation and dark repair. The multiple damages can be further evidenced by 4.0-61.1 times higher quantum yield in the photolysis of nucleobases and amino acids for UV222 than UV254. This study demonstrates that UV222 treatment damages multiple sites in bacteria, leading to their inactivation. Employing UV222 treatment as an alternative to UV254 could be viable for inhibiting microorganism photoreactivation in water and wastewater.

13.
Environ Sci Technol ; 58(16): 7113-7123, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38547102

ABSTRACT

Low-pressure mercury lamps with high-purity quartz can emit both vacuum-UV (VUV, 185 nm) and UV (254 nm) and are commercially available and promising for eliminating recalcitrant organic pollutants. The feasibility of VUV/UV as a chemical-free oxidation process was verified and quantitatively assessed by the concept of H2O2 equivalence (EQH2O2), at which UV/H2O2 showed the same performance as VUV/UV for the degradation of trace organic contaminants (TOrCs). Although VUV showed superior H2O activation and oxidation performance, its performance highly varied as a function of light path length (Lp) in water, while that of UV/H2O2 proportionally decreased with decreasing H2O2 dose regardless of Lp. On increasing Lp from 1.0 to 3.0 cm, the EQH2O2 of VUV/UV decreased from 0.81 to 0.22 mM H2O2. Chloride and nitrate hardly influenced UV/H2O2, but they dramatically inhibited VUV/UV. The competitive absorbance of VUV by chloride and nitrate was verified as the main reason. The inhibitory effect was partially compensated by •OH formation from the propagation reactions of chloride or nitrate VUV photolysis, which was verified by kinetic modeling in Kintecus. In water with an Lp of 2.0 cm, the EQH2O2 of VUV/UV decreased from 0.43 to 0.17 mM (60.8% decrease) on increasing the chloride concentration from 0 to 15 mM and to 0.20 mM (53.5% decrease) at 4 mM nitrate. The results of this study provide a comprehensive understanding of VUV/UV oxidation in comparison to UV/H2O2, which underscores the suitability and efficiency of chemical-free oxidation with VUV/UV.


Subject(s)
Hydrogen Peroxide , Organic Chemicals , Oxidation-Reduction , Ultraviolet Rays , Hydrogen Peroxide/chemistry , Organic Chemicals/chemistry , Photolysis , Water Pollutants, Chemical/chemistry , Nitrates/chemistry
14.
Environ Sci Process Impacts ; 26(5): 824-831, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38323647

ABSTRACT

The control of viruses in water is critical to preventing the spread of infectious viral diseases. Many oxidants can inactivate viruses, and this study aims to systematically compare the disinfection effects of ozone (O3), peroxymonosulfate (PMS), and hydrogen peroxide (H2O2) on MS2 coliphage. The effects of oxidant dose and contact time on disinfection were explored, as were the disinfection effects of three oxidizing agents in secondary effluent. The 4-log inactivation of MS2 coliphage required 0.05 mM O3, 0.5 mM PMS, or 25 mM H2O2 with a contact time of 30 min. All three oxidants achieved at least 4-log disinfection within 30 min, and O3 required only 0.5 min. In secondary effluent, all three oxidants also achieved 4-log inactivation of MS2 coliphage. Excitation-emission matrix (EEM) results indicate that all three oxidants removed dissolved organic matter synchronously and O3 oxidized dissolved organic matter more thoroughly while maintaining disinfection efficacy. Considering the criteria of oxidant dose, contact time, and disinfection efficacy in secondary effluent, O3 is the best choice for MS2 coliphage disinfection among the three oxidants.


Subject(s)
Disinfection , Hydrogen Peroxide , Levivirus , Ozone , Peroxides , Water Purification , Ozone/chemistry , Ozone/pharmacology , Disinfection/methods , Levivirus/drug effects , Peroxides/chemistry , Water Purification/methods , Water Microbiology , Disinfectants/pharmacology , Oxidants/pharmacology , Oxidants/chemistry
15.
Environ Res ; 248: 118300, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38281562

ABSTRACT

Co-processing recycled waste during cement production, i.e., using alternative materials such as secondary raw materials or secondary raw fuels, is widely practiced in developed countries. Alternative raw materials or fuels contain high concentrations of heavy metals and other hazardous chemicals, which might lead to the potential for dangerous heavy metals and hazardous chemicals to be transferred to clinker or cement products, resulting in exposure and emissions to people or the environment. Managing input materials and predicting which inputs affect the final concentration is essential to prevent potential hazards. We used the data of six heavy metals by input raw materials and input fuels of cement manufacturers in 2016-2017. The concentrations of Pb and Cu in cement were about 10-200 times and 4 to 200 times higher than other heavy metals (Cr, As, Cd, Hg), respectively. We profiled the influence of heavy metal concentration of each input material using the principal component analysis (PCA), which analyzed the leading causes of each heavy metal. The Random Forest (RF) ensemble model predicted cement heavy metal concentrations according to input materials. In the case of Cu, Cd, and Cr, the training performance showed R square values of 0.71, 0.71, and 0.92, respectively, as a result of predicting the cement heavy metal concentration according to the heavy metal concentration of each cement input material using the RF model, which is a machine learning model. The results of this study show that the RF model can be used to predict the amount and concentration of alternative raw materials and alternative fuels by controlling the concentration of heavy metals in cement through the concentration of heavy metals in the input materials.


Subject(s)
Cadmium , Metals, Heavy , Humans , Cadmium/analysis , Random Forest , Metals, Heavy/analysis , Hazardous Substances/analysis , Machine Learning , Environmental Monitoring/methods
16.
Dent Mater J ; 43(1): 58-66, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38008438

ABSTRACT

Dental bases require low thermal conductivity and good mechanical properties, such as bonding with composite resins. This study aims to elucidate the physicochemical properties of premixed mineral trioxide aggregate (MTA) for its suitability as a dental base and to explore the optimal adhesive strategy with composite resin. The thermal conductivity and compressive strength of this premixed MTA are 0.12 W/(m•K) and 93.76 MPa, respectively, Which are deemed adequate for its application as dental base. When bonded to composite resin, the use of 37% phosphoric acid etching before applying the Clearfil SE bond significantly reduced the bonding strength between composite resin and premixed MTA. This was because the compressive strength and Vickers hardness of premixed MTA decreased, and tricalcium silicate was dissolved from the surface during acid etching. Therefore, it is recommended to avoid using 37% phosphoric acid etching when bonding premixed MTA and composite resin as a dental base.


Subject(s)
Aluminum Compounds , Calcium Compounds , Composite Resins , Dental Bonding , Oxides , Phosphoric Acids , Silicates , Composite Resins/chemistry , Resin Cements/chemistry , Acid Etching, Dental , Surface Properties , Materials Testing , Shear Strength , Drug Combinations
17.
J Hazard Mater ; 464: 133011, 2024 02 15.
Article in English | MEDLINE | ID: mdl-37988868

ABSTRACT

Microwave discharge electrodeless lamp (MDEL) is a novel ultraviolet (UV) light source. Synergistic disinfection using UV light emitted by MDEL (MWUV) coupled with ozone (O3) at an ultra-low dose was investigated. Escherichia coli and Bacillus subtilis were deactivated more effectively by MWUV/O3 than by either MWUV or O3 alone. MWUV/O3 treatment using an O3 concentration of 0.4 mg/L gave an E. coli inactivation rate of 5.52 log. The photoreactivation degree and rate of E. coli were lower after inactivation by MWUV/O3 treatment than after MWUV treatment alone. The maximum photoreactivation rates after the MWUV/O3 and MWUV treatments were 2.90% and 16.08%, respectively. MWUV/O3 disinfection also inhibited dark resurrection of E. coli and gave a maximum dark resurrection rate of 0.0036%. Electron paramagnetic resonance spectroscopy indicated that more hydroxyl radicals were generated during MWUV/O3 treatment. Scanning electron microscopy and laser confocal scanning microscopy observations indicated that O3 played a key role in breaking down the cell structure. MWUV/O3 treatment gave a good disinfection effect on fecal coliform bacteria in actual domestic wastewater. The results indicated that inactivation of bacteria can be more effectively achieved by MWUV treatment with O3.


Subject(s)
Ozone , Water Purification , Disinfection/methods , Wastewater , Escherichia coli , Microwaves , Ultraviolet Rays , Water Purification/methods
18.
Environ Int ; 182: 108314, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37979535

ABSTRACT

Vacuum ultraviolet (VUV, 185 + 254 nm) irradiation performs well for oxidation of model pollutants. However, oxidation of pollutants does not necessarily lead to a reduction in toxicity. Currently, a comprehensive understanding of the effect of VUV irradiation on the toxicity of real wastewater is still lacking. In this study, the influence of VUV irradiation on the toxicity of secondary effluents to Chinese hamster ovary (CHO) cells was investigated. The induction units of endogenous reactive oxygen species (ROS) and 8-hydroxyguanosine (8-OHdG) in cells continuously decreased with prolonged irradiation time. After 36 min of irradiation, the cytotoxicity and the genotoxicity of the secondary effluents were reduced by 57%-63% and 56%-61%, respectively. The UV (254 nm), •OH, and other substances generated during the VUV irradiation directly drive toxicity changes of wastewater. The contribution of •OH generated during VUV irradiation to the reductions in cytotoxicity and genotoxicity of the secondary effluents reached 72%-78% and 77%-84%, respectively. Hydroxyl radicals generated during VUV irradiation played an important role in the detoxification. The relative signal intensity of dissolved organic carbon (DOC) > 500 Da was partially removed, whereas that of DOC < 500 Da was small changed. Since the content of DOC > 500 Da in the samples was much lower than that of DOC < 500 Da, the removal of total DOC was only 15.8%-20.0% after 36 min of irradiation. The UV254 values and the fluorescence intensity values for different molecular weights (MWs) were all reduced effectively by VUV irradiation. Electron-rich organic compounds of all MWs were all sensitive to VUV irradiation. There were mono-linear relationships between changes in chemical indexes and changes in cytotoxicity or genotoxicity. The total fluorescence intensity (Ex: 220-420 nm, Em: 280-560 nm) was identified as the best indicator of the reduction in toxicity.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Water Purification , Cricetinae , Animals , Wastewater , CHO Cells , Vacuum , Cricetulus , Ultraviolet Rays , Organic Chemicals , Dissolved Organic Matter , Oxidation-Reduction , Water Pollutants, Chemical/analysis
19.
Sci Rep ; 13(1): 19786, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37957236

ABSTRACT

Some individuals with mild traumatic brain injury (mTBI), also known as concussion, have neuropsychiatric and physical problems that last longer than a few months. Symptoms following mTBI are not only impacted by the kind and severity of the injury but also by the post-injury experience and the individual's responses to it, making the persistence of mTBI particularly difficult to predict. We aimed to identify prognostic blood-based protein biomarkers predicting 6-month outcomes, in light of the clinical course after the injury, in a longitudinal mTBI cohort (N = 42). Among 420 target proteins quantified by multiple-reaction monitoring-mass spectrometry assays of blood samples, 31, 43, and 15 proteins were significantly associated with the poor recovery of neuropsychological symptoms at < 72 h, 1 week, and 1 month after the injury, respectively. Sequential associations among clinical assessments (depressive symptoms and cognitive function) affecting the 6-month outcomes were evaluated. Then, candidate biomarker proteins indirectly affecting the outcome via neuropsychological symptoms were identified. Using the identified proteins, prognostic models that can predict the 6-month outcome of mTBI were developed. These protein biomarkers established in the context of the clinical course of mTBI may have potential for clinical application.


Subject(s)
Brain Concussion , Humans , Brain Concussion/diagnosis , Prognosis , Proteomics , Biomarkers , Disease Progression
20.
Saf Health Work ; 14(2): 229-236, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37389320

ABSTRACT

Background: In workers with moderate to severe work-related traumatic brain injury (wrTBI), this study aimed to investigate the effect of the timing of rehabilitation therapy initiation on the length of hospital stay and the factors that can influence this timing. Methods: We used data obtained from the Republic of Korea's nationwide Workers' Compensation Insurance. In the Republic of Korea, between the years 2010 and 2019, a total of 26,324 workers filed a claim for compensation for moderate to severe wrTBI. Multiple regression modeling was performed to compare the length of hospital stay according to the timing of rehabilitation therapy initiation following wrTBI. According to the timing of the initiation of rehabilitation therapy following TBI, the proportions of healthcare institutions that provided medical care during each admission step were compared. Results: The length of hospital stay for workers who started rehabilitation therapy within 90 days was significantly shorter than that for workers who started rehabilitationment were first admitted to tertiary hospitals. Approximately 39% of patients who received delayed rehabilitation treatment were first admitted to general hospitals, and 28.5% were first admitted to primary hospitals. Conclusions: Our findings demonstrate the importance of early rehabilitation initiation and that the type of healthcare institution that the patient is first admitted to after wrTBI may influence the timing of rehabilitation initiation. The results of this study also emphasize the need to establish a Worker's Compensation Insurance-specialized rehabilitation healthcare delivery system.

SELECTION OF CITATIONS
SEARCH DETAIL