Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters








Database
Language
Publication year range
1.
Cancer Radiother ; 27(4): 319-327, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37164897

ABSTRACT

PURPOSE: Monte Carlo (MC) simulations can be used to accurately simulate dose and linear energy transfers (LET) distributions, thereby allowing for the calculation of the relative biological effectiveness (RBE) of protons. We present hereby the validation and implementation of a workflow for the Monte Carlo modelling of the double scattered and pencil beam scanning proton beamlines at our institution. METHODS: The TOPAS/Geant4 MC model of the clinical nozzle has been comprehensively validated against measurements. The validation also included a comparison between simulated clinical treatment plans for four representative patients and the clinical treatment planning system (TPS). Moreover, an in-house tool implemented in Python was tested to assess the variable RBE-weighted dose in proton plans, which was illustrated for a patient case with a developing radiation-induced toxicity. RESULTS: The simulated range and modulation width closely matches the measurements. Gamma-indexes (3%/3mm 3D), which compare the TPS and MC computations, showed a passing rate superior to 98%. The calculated RBE-weighted dose presented a slight increase at the necrosis location, within the PTV margins. This indicates the need for reporting on the physical and biological effects of irradiation in high dose regions, especially at the healthy tissues and increased LET distributions location. CONCLUSION: The results demonstrate that the Monte Carlo method can be used to independently validate a TPS calculation, and to estimate LET distributions. The features of the in-house tool can be used to correlate LET and RBE-weighted dose distributions with the incidence of radiation-induced toxicities following proton therapy treatments.


Subject(s)
Proton Therapy , Radiation Injuries , Humans , Proton Therapy/adverse effects , Proton Therapy/methods , Protons , Retrospective Studies , Radiotherapy Dosage , Monte Carlo Method , Workflow , Radiotherapy Planning, Computer-Assisted/methods , Algorithms
2.
Phys Med ; 106: 102518, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36638707

ABSTRACT

PURPOSE: Accurate dosimetry is paramount to study the FLASH biological effect since dose and dose rate are critical dosimetric parameters governing its underlying mechanisms. With the goal of assessing the suitability of standard clinical dosimeters in a very-high dose rate (VHDR) experimental setup, we evaluated the ion collection efficiency of several commercially available air-vented ionization chambers (IC) in conventional and VHDR proton irradiation conditions. METHODS: A cyclotron at the Orsay Proton Therapy Center was used to deliver VHDR pencil beam scanning irradiation. Ion recombination correction factors (ks) were determined for several detectors (Advanced Markus, PPC05, Nano Razor, CC01) at the entrance of the plateau and at the Bragg peak, using the Niatel model, the Two-voltage method and Boag's analytical formula for continuous beams. RESULTS: Mean dose rates ranged from 4 Gy/s to 385 Gy/s, and instantaneous dose rates up to 1000 Gy/s were obtained with the experimental set-up. Recombination correction factors below 2 % were obtained for all chambers, except for the Nano Razor, at VHDRs with variations among detectors, while ks values were significantly smaller (0.8 %) for conventional dose rates. CONCLUSIONS: While the collection efficiency of the probed ICs in scanned VHDR proton therapy is comparable to those in the conventional regime with recombination coefficiens smaller than 1 % for mean dose rates up to 177 Gy/s, the reduction in collection efficiency for higher dose rates cannot be ignored when measuring the absorbed dose in pre-clinical proton scanned FLASH experiments and clinical trials.


Subject(s)
Proton Therapy , Protons , Radiometry/methods , Proton Therapy/methods , Cyclotrons , Radiation Dosimeters
3.
Phys Med Biol ; 66(22)2021 11 24.
Article in English | MEDLINE | ID: mdl-34673555

ABSTRACT

The Orsay Proton therapy Center (ICPO) has a long history of intracranial radiotherapy using both double scattering (DS) and pencil beam scanning (PBS) techniques, and is actively investigating a promising modality of spatially fractionated radiotherapy using proton minibeams (pMBRT). This work provides a comprehensive comparison of the organ-specific secondary neutron dose due to each of these treatment modalities, assessed using Monte Carlo (MC) algorithms and measurements. A MC model of a universal nozzle was benchmarked by comparing the neutron ambient dose equivalent,H*(10), in the gantry room with measurements obtained using a WENDI-II counter. The secondary neutron dose was evaluated for clinically relevant intracranial treatments of patients of different ages, in which secondary neutron doses were scored in anthropomorphic phantoms merged with the patients' images. The MC calculatedH*(10) values showed a reasonable agreement with the measurements and followed the expected tendency, in which PBS yields the lowest dose, followed by pMBRT and DS. Our results for intracranial treatments show that pMBRT yielded a higher secondary neutron dose for organs closer to the target volume, while organs situated furthest from the target volume received a greater quantity of neutrons from the passive scattering beam line. To the best of our knowledge, this is the first study to compare MC secondary neutron dose estimates in clinical treatments between these various proton therapy modalities and to realistically quantify the secondary neutron dose contribution of clinical pMBRT treatments. The method established in this study will enable epidemiological studies of the long-term effects of intracranial treatments at ICPO, notably radiation-induced second malignancies.


Subject(s)
Neoplasms, Radiation-Induced , Proton Therapy , Humans , Monte Carlo Method , Neutrons , Phantoms, Imaging , Proton Therapy/methods , Protons , Radiotherapy Dosage
SELECTION OF CITATIONS
SEARCH DETAIL