Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-35627489

ABSTRACT

Among neurodevelopmental disorders, attention deficit hyperactivity disorder (ADHD) is the main cause of school failure in children. Notably, visuospatial dysfunction has also been emphasized as a leading cause of low cognitive performance in children with ADHD. Consequently, the present study aimed to identify ADHD-related changes in electroencephalography (EEG) characteristics, associated with visual object processing in school-aged children. We performed Multichannel EEG recordings in 16-year-old children undergoing Navon's visual object processing paradigm. We mapped global coherence during the processing of local and global visual stimuli that were consistent, inconsistent, or neutral. We found that Children with ADHD showed significant differences in global weighted coherence during the processing of local and global inconsistent visual stimuli and longer response times in comparison to the control group. Delta and theta EEG bands highlighted important features for classification in both groups. Thus, we advocate EEG coherence and low-frequency EEG spectral power as prospective markers of visual processing deficit in ADHD. Our results have implications for the development of diagnostic interventions in ADHD and provide a deeper understanding of the factors leading to low performance in school-aged children.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Adolescent , Attention Deficit Disorder with Hyperactivity/diagnosis , Child , Cognition , Electroencephalography/methods , Humans , Prospective Studies , Visual Perception
2.
Medicine (Baltimore) ; 97(35): e12008, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30170407

ABSTRACT

The present investigation documents the electrophysiological occurrence of multisensory internal stochastic resonance (MISR) in the human electroencephalographic (EEG) coherence elicited by auditory and visual noise.We define MISR of EEG coherence as the phenomenon for which an intermediate level of input noise of a sensory modality enhances EEG coherence in response to another noisy sensory modality. Here, EEG coherence is computed by the global weighted coherence (GWC), modulated by quasi-Brownian noise. Specifically, we examined whether a particular level of auditory noise together with constant visual noise (experimental condition 1) and a specified level of visual noise together with constant auditory noise (experimental condition 2), improves EEG's GWC. We compared GWC between ongoing EEG basal activity (BA), zero noise (ZN), optimal noise (ON), and high noise (HN).The data disclosed an intermediate level of input noise that enhances the GWC for the majority of the subjects, thus demonstrating for the first time the occurrence of multisensory internal stochastic resonance (SR) in visuoauditory processing within the central nervous system.


Subject(s)
Electroencephalography/methods , Evoked Potentials, Auditory/physiology , Evoked Potentials, Visual/physiology , Models, Neurological , Acoustic Stimulation , Adult , Auditory Perception/physiology , Female , Healthy Volunteers , Humans , Male , Noise , Photic Stimulation , Stochastic Processes , Visual Perception/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL