Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters








Database
Language
Publication year range
1.
Heliyon ; 9(3): e14462, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36994402

ABSTRACT

Due to ever-increasing technological acceleration leading to rapid changes in society and its needs, just as today's habits and needs turn out to be completely different from those of only a few years ago, likewise it is reasonable to assume that the same trend will continue in its growth path, making today's solutions rapidly obsolete as time passes and technological innovations follow. This study aims to investigate possible solutions in search of a futuristic and breakthrough response to what is present today. The idea concerns the design of a new type of means of transportation that can best interface with what today are the various criticalities given by vehicular traffic mainly urban but also suburban, going to solve by generating new opportunities from previous problems. This system will be able to go alongside and gradually replace a substantial portion of the current means of transport going to conceptually redefine some elements taken for granted today. In this regard, the application of the IDeS (Industrial Design Structure) methodology has been found to be of great use, which, thanks to the scientific and repeatable methods contained within, has made it possible to arrive at a very clear visualization of the problem, a precise definition, and a level of innovation that is fully satisfactory with respect to the contemporary scenario, while always keeping an eye on feasibility while taking into account the conceptual and therefore deliberately very driven nature of the solution being designed.

2.
Heliyon ; 8(10): e11136, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36339988

ABSTRACT

Fused Deposition Modelling (FDM) technology allows to choose a large variety of materials and it is widely used by companies and individuals nowadays. The cost effectiveness of rapid prototyping is achievable via FDM, that makes this technology useful for research and innovation. The application of 3D printing to aid production is the most common approach. Moreover, the use of 3D printing in prototypes result in a waste of material since no reuse is considered. In the following manuscript, this technology is applied to mould fabrication by achieving a low surface roughness at a modest cost compared to conventional manufacturing methods. Moreover, the possibility to use a combination of thermoplastic materials is analysed by examination of the CAD model optimized for Additive Manufacturing (AM) from scratch and was verified using metrology tools. Several moulds were finally built and applied to the specific case study of carbon fibre laminated components. This manuscript aims to analyse the manufacturing process by comparing the mould surface geometry before and after the smoothing process. The achieved tolerance between the produced moulds is ±0.05 mm that ensures the repeatability of the process from an industrial point of view; whilst the deviation between CAD and mould is ±0.2 mm. To combine an accurate FDM process together with chemical smoothing proved to be a powerful strategy to produce high quality components that can be inserted in the production process by means of traditional manufacturing techniques. This will aid to reduce the cost of standard manufacturing for low production batches and prototypes of carbon fibre composites.

3.
Polymers (Basel) ; 13(21)2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34771265

ABSTRACT

Fused Deposition Modeling (FDM) 3D printing is the most widespread technology in additive manufacturing worldwide that thanks to its low costs, finished component applications, and the production process of other parts. The need for lighter and higher-performance components has led to an increased usage of polymeric matrix composites in many fields ranging from automotive to aerospace. The molds used to manufacture these components are made with different technologies, depending on the number of pieces to be made. Usually, they are fiberglass molds with a thin layer of gelcoat to lower the surface roughness and obtain a smooth final surface of the component. Alternatively, they are made from metal, thus making a single carbon fiber prototype very expensive due to the mold build. Making the mold using FDM technology can be a smart solution to reduce costs, but due to the layer deposition process, the roughness is quite high. The surface can be improved by reducing the layer height, but it is still not possible to reach the same degree of surface finish of metallic or gelcoat molds without the use of fillers. Thermoplastic polymers, also used in the FDM process, are generally soluble in specific solvents. This aspect can be exploited to perform chemical smoothing of the external surface of a component. The combination of FDM and chemical smoothing can be a solution to produce low-cost molds with a very good surface finish.

4.
J Funct Biomater ; 12(4)2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34842761

ABSTRACT

Improvements in software for image analysis have enabled advances in both medical and engineering industries, including the use of medical analysis tools to recreate internal parts of the human body accurately. A research analysis found that FDM-sourced elements have shown viability for a customized and reliable approach in the orthopedics field. Three-dimensional printing has allowed enhanced accuracy of preoperative planning, leading to reduced surgery times, fewer unnecessary tissue perforations, and fewer healing complications. Furthermore, using custom tools chosen for each procedure has shown the best results. Bone correction-related surgeries require customized cutting guides for a greater outcome. This study aims to assess the biopolymer-based tools for surgical operations and their ability to sustain a regular heat-sterilization cycle without compromising the geometry and fit characteristics for a proper procedure. To achieve this, a DICOM and FDM methodology is proposed for fast prototyping of the cutting guide by means of 3D engineering. A sterilization test was performed on HTPLA, PLA, and nylon polymers. As a result, the unique characteristics within the regular autoclave sterilization process allowed regular supplied PLA to show there were no significant deformations, whilst annealed HTPLA proved this material's capability of sustaining repeated heat cycles due to its crystallization properties. Both of these proved that the sterilization procedures do not compromise the reliability of the part, nor the safety of the procedure. Therefore, prototypes made with a similar process as this proposal could be safely used in actual surgery practices, while nylon performed poorly because of its hygroscopic properties.

5.
Polymers (Basel) ; 13(20)2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34685314

ABSTRACT

Additive manufacturing processes have evolved considerably in the past years, growing into a wide range of products through the use of different materials depending on its application sectors. Nevertheless, the fused deposition modelling (FDM) technique has proven to be an economically feasible process turning additive manufacture technologies from consumer production into a mainstream manufacturing technique. Current advances in the finite element method (FEM) and the computer-aided engineering (CAE) technology are unable to study three-dimensional (3D) printed models, since the final result is highly dependent on processing and environment parameters. Because of that, an in-depth understanding of the printed geometrical mesostructure is needed to extend FEM applications. This study aims to generate a homogeneous structural element that accurately represents the behavior of FDM-processed materials, by means of a representative volume element (RVE). The homogenization summarizes the main mechanical characteristics of the actual 3D printed structure, opening new analysis and optimization procedures. Moreover, the linear RVE results can be used to further analyze the in-deep behavior of the FDM unit cell. Therefore, industries could perform a feasible engineering analysis of the final printed elements, allowing the FDM technology to become a mainstream, low-cost manufacturing process in the near future.

6.
Polymers (Basel) ; 13(13)2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34209372

ABSTRACT

Technology evolution and wide research attention on 3D printing efficiency and processes have given the prompt need to reach an understanding about each technique's prowess to deliver superior quality levels whilst showing an economical and process viability to become mainstream. Studies in the field have struggled to predict the singularities that arise during most Fused Deposition Modeling (FDM) practices; therefore, diverse individual description of the parameters have been performed, but a relationship study between them has not yet assessed. The proposed study lays the main defects caused by a selection of printing parameters which might vary layer slicing, then influencing the defect rate. Subsequently, the chosen technique for optimization is presented, with evidence of its application viability that suggests that a quality advance would be gathered with such. The results would help in making the FDM process become a reliable process that could also be used for industry manufacturing besides prototyping purposes.

7.
Bioengineering (Basel) ; 8(6)2021 May 26.
Article in English | MEDLINE | ID: mdl-34073324

ABSTRACT

Three-dimensional printed custom cutting guides (CCGs) are becoming more and more investigated in medical literature, as a patient-specific approach is often desired and very much needed in today's surgical practice. Three-dimensional printing applications and computer-aided surgical simulations (CASS) allow for meticulous preoperatory planning and substantial reductions of operating time and risk of human error. However, several limitations seem to slow the large-scale adoption of 3D printed CCGs. CAD designing and 3D printing skills are inevitably needed to develop workflow and address the study; therefore, hospitals are pushed to include third-party collaboration, from highly specialized medical centers to industrial engineering companies, thus increasing the time and cost of labor. The aim of this study was to move towards the feasibility of an in-house, low-cost CCG 3D printing methodology for pediatric orthopedic (PO) surgery. The prototype of a femoral cutting guide was developed for its application at the IOR-Rizzoli Orthopedic Institute of Bologna. The element was printed with an entry-level 3D printer with a high-temperature PLA fiber, whose thermomechanical properties can withstand common steam heat sterilization without bending or losing the original geometry. This methodology allowed for extensive preoperatory planning that would likewise reduce the overall surgery time, whilst reducing the risks related to the intervention.

SELECTION OF CITATIONS
SEARCH DETAIL