ABSTRACT
C-reactive protein (CRP) is a liver-derived acute phase reactant that is a clinical marker of inflammation associated with poor cancer prognosis. Elevated CRP levels are observed in many types of cancer and are associated with significantly increased risk of metastasis, suggesting that CRP could have pro-metastatic actions. Here, we reported that CRP promotes lung metastasis by dampening the anti-cancer capacity of pulmonary macrophages in breast cancer and melanoma. Deletion of CRP in mice inhibited lung metastasis of breast cancer and melanoma cells without significantly impacting tumor growth compared to wildtype mice. In addition, the lungs of CRP deficient mice were enriched for activated pulmonary macrophages, which could be reduced to the level of wildtype mice by systemic administration of human CRP. Mechanistically, CRP blocked the activation of pulmonary macrophages induced by commensal bacteria in a FcγR2B-dependent manner, thereby impairing macrophage-mediated immune surveillance to promote the formation of a pre-metastatic niche in the lungs of tumor-bearing mice. Accordingly, treatment with specific CRP inhibitors activated pulmonary macrophages and attenuated lung metastasis in vivo. These findings highlight the importance of CRP in lung metastasis, which may represent an effective therapeutic target for patients with advanced solid cancers in clinics.
ABSTRACT
C-reactive protein (CRP) is an acute-phase protein produced by the liver in response to infection and during chronic inflammatory disorders. Systemic inflammation is a major driver of cirrhosis progression from the compensated to the decompensated stage. Previous studies have shown that pentameric CRP (pCRP) to be a weak predictor of disease severity and prognosis in patients with decompensated hepatitis B cirrhosis, with it being only helpful for identifying patients with a higher short-term risk of death under certain conditions. Accumulating evidence indicates that pCRP dissociates to and acts primarily as the monomeric conformation (mCRP) at inflammatory loci, suggesting that mCRP may be a potentially superior disease marker with higher specificity and relevance to pathogenesis. However, it is unknown whether mCRP and anti-mCRP autoantibodies are associated with disease severity, or progression in decompensated hepatitis B cirrhosis. In this study, we evaluated the serum levels of mCRP and anti-mCRP autoantibodies in patients with decompensated cirrhosis of hepatitis B and their association with disease severity and theoretical prognosis. The results showed that patients with high mCRP and anti-mCRP autoantibody levels had more severe liver damage and that coagulation function was worse in patients with high anti-mCRP autoantibodies. Analysis of the correlation between pCRP, mCRP and anti-mCRP autoantibody levels with Model for End-Stage Liver Disease (MELD), Albumin-Bilirubin (ALBI), and Child-Turcotte-Pugh (CTP) prognostic scores showed that mCRP was the most strongly correlated with MELD score, followed by anti-mCRP autoantibodies; conversely, pCRP was not significantly correlated with prognostic score. Therefore, mCRP and anti-mCRP autoantibodies may be more advantageous clinical indicators than pCRP for evaluating the pathological state of decompensated hepatitis B cirrhosis.
Subject(s)
Autoantibodies , Biomarkers , C-Reactive Protein , Liver Cirrhosis , Severity of Illness Index , Humans , C-Reactive Protein/analysis , C-Reactive Protein/metabolism , Female , Prognosis , Male , Liver Cirrhosis/immunology , Liver Cirrhosis/diagnosis , Liver Cirrhosis/blood , Liver Cirrhosis/etiology , Autoantibodies/blood , Autoantibodies/immunology , Middle Aged , Biomarkers/blood , Adult , Disease Progression , Hepatitis B/immunology , Hepatitis B/bloodABSTRACT
PURPOSE: Anti-gamma-aminobutyric acid B receptor (GABABR) encephalitis is an uncommon form of autoimmune encephalitis associated with a poor prognosis and a high fatality rate. We aim to find diagnostic markers for anti- GABABR encephalitis as well as the effects of immune cell infiltration on this pathology. METHODS: For quantitative proteomic analysis, isobaric tags for relative and absolute quantitation were used in conjunction with LC-MS/MS analysis. To conduct functional correlation analyses, differentially expressed proteins (DEPs) were identified. Following that, we used bioinformatics analysis to screen for and determine the diagnostic signatures of anti- GABABR encephalitis. ROC curves were used to evaluate the diagnostic values. To assess the inflammatory status of anti- GABABR encephalitis, we used cell-type identification by estimating relative subsets of the RNA transcript (CIBERSORT) and explored the link between diagnostic markers and infiltrating immune cells. RESULTS: Overall, 108 robust DEPs (47 upregulated and 61 downregulated) were identified, of which 11 were immune related. The most impressively enriched pathways were complemented and coagulation cascades, actin cytoskeleton regulation, and cholesterol metabolism; GSEA revealed that the enriched pathways were considerably differentially connected to immune modulation. Eleven immune-related DEPs were chosen for further investigation. We developed a novel diagnostic model based on CSF1R and AZGP1 serum levels using ROC analysis (area under the ROC curve = 1). M1 macrophages and activated natural killer cells are likely to play a role in course of anti- GABABR encephalitis. CONCLUSION: We identified CSF1R and AZGP1 are possible anti-GABABR encephalitis diagnostic indicators, and immune cell infiltration may have a significant impact on the development and occurrence of anti- GABABR encephalitis.
Subject(s)
Encephalitis , gamma-Aminobutyric Acid , Humans , Autoantibodies , Chromatography, Liquid , Proteomics , Receptors, GABA-B , Tandem Mass SpectrometryABSTRACT
BACKGROUND AND OBJECTIVES: Neuromyelitis optica spectrum disorder (NMOSD) is a group of demyelinating diseases of the nervous system with high relapse rate and high disability rate without treatment, and we aimed to explore the influencing factors related to the recurrence of NMOSD and provide basis for clinical treatment in this study. METHODS: Referring to the diagnostic criteria for NMOSD issued in 2015, 259 patients were enrolled. Clinical information, cerebrospinal fluid (CSF) and serum analysis results, brain and spinal cord magnetic resonance imaging (MRI) findings, treatment details, and prognosis were all recorded. RESULTS: 176 (68.00%) participants were found to be AQP4 Ab-positive in serum or CSF, and the relapse rate was 36.67% (95/259). These 259 individuals were separated into two groups: non-release (n = 164) and relapse (n = 95). In terms of EDSS scores at onset, EDSS score after treatment, lesion location, serum creatinine (Cr) and treatment strategy, there were statistical differences between the two groups. Multivariable logistic regression analyses revealed five predictors for recurrence of NMOSD patients within two years: EDSS scores at onset, transverse myelitis, brain/brainstem, Cr, and Rituximab/immunosuppressants. CONCLUSION: It is essential to explore the risk factors related to recurrence and prevent them to reduce the risk of disability and improve the prognosis, and the recurrence rate of NMOSD may be affected by several factors.
ABSTRACT
BACKGROUND: Complement overactivation is a major driver of lupus nephritis (LN). Impaired interactions of C-reactive protein (CRP) with complement factor H (CFH) have been shown as a pathogenic mechanism that contributes to the overactivation of complement in LN. However, genetic variations of neither CRP nor CFH show consistent influences on the risk of LN. AIM: To examine whether genetic variations of CRP and CFH in combination can improve the risk stratification in Chinese population. METHODS: We genotyped six CRP single nucleotide polymorphisms (SNPs) (rs1205, rs3093062, rs2794521, rs1800947, rs3093077, and rs1130864) and three CFH SNPs (rs482934, rs1061170, and rs1061147) in 270 LN patients and 303 healthy subjects. RESULTS: No linkage was found among CRP and CFH SNPs, indicating lack of genetic interactions between the two genes. Moreover, CRP and CFH SNPs, neither individually nor in combination, are associated with the risk or clinical manifestations of LN. Given the unambiguous pathogenic roles of the two genes. CONCLUSION: These findings suggest that the biological effects of most genetic variations of CRP and CFH on their expressions or activities are not sufficient to influence the disease course of LN.
ABSTRACT
C-reactive protein (CRP) is a highly conserved pentraxin with pattern recognition receptor-like activities. However, despite being used widely as a clinical marker of inflammation, the in vivo functions of CRP and its roles in health and disease remain largely unestablished. This is, to certain extent, due to the drastically different expression patterns of CRP in mice and rats, raising concerns about whether the functions of CRP are essential and conserved across species and how these model animals should be manipulated to examine the in vivo actions of human CRP. In this review, we discuss recent advances highlighting the essential and conserved functions of CRP across species, and propose that appropriately designed animal models can be used to understand the origin-, conformation-, and localization-dependent actions of human CRP in vivo. The improved model design will contribute to establishing the pathophysiological roles of CRP and facilitate the development of novel CRP-targeting strategies.
Subject(s)
C-Reactive Protein , Inflammation , Humans , Animals , Mice , Rats , Models, AnimalABSTRACT
OBJECTIVE: We aimed to investigate levels of cytokines/chemokines and immune checkpoint molecules in patients with anti-leucine-rich glioma-inactivated 1 (LGI1) encephalitis. METHODS: The study recruited 12 patients with anti-LGI1 encephalitis and six non-inflammatory controls from the Qilu Hospital of Shandong University treated between January 2019 and December 2020. Serum levels of 30 cytokines/chemokines and 10 checkpoint molecules were measured in participants of both the groups. RESULTS: In contrast to those in the control group, 24 cytokines/chemokines and 5 immune checkpoint molecules were differentially expressed in patients with anti-LGI1 encephalitis, with 14 cytokines being upregulated and 10 being downregulated. There were 1033 enriched biological processes and 61 enriched Kyoto Encyclopedia of Genes and Genomes signaling pathways. CONCLUSION: A wide range of cytokines/chemokines and immune checkpoint molecules are implicated in immune regulation in anti-LGI1 encephalitis, indicating that they may serve as important targets in the development and treatment of the disease.
Subject(s)
Encephalitis , Glioma , Humans , Leucine , Cytokines , Immune Checkpoint Proteins , Intracellular Signaling Peptides and Proteins , Autoantibodies , ChemokinesABSTRACT
Background: Neutrophil extracellular traps (NETs) have been found to play an important role in several nervous system diseases. However, their role in anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis remains unclear. The purpose of this study was to examine the possible role of NETs in anti-NMDAR encephalitis. Materials and methods: Eleven patients with anti-NMDAR encephalitis and ten healthy participants were enrolled. Plasma NETs levels were detected using an immunofluorescence assay and enzyme-linked immunosorbent assay. Additionally, we examined 10 plasma cytokines in patients with anti-NMDAR encephalitis and analyzed the correlation between citrullinated histone 3 levels and cytokine release. Results: Peripheral blood neutrophils from patients with anti-NMDAR encephalitis were more susceptible to NET generation. When compared with controls, cases of anti-NMDAR encephalitis showed elevated levels of IL-1 α, IL-6, IL-8, IL-13, MCP-1, and TNF-α (p < 0.05). Moreover, IL-6, IL-8, and TNF-α levels were positively correlated with H3Cit levels. Conclusion: We provide evidence that NETs may play a role in anti-NMDAR encephalitis, providing clues for elucidation of the pathogenesis of this disease.
Subject(s)
Anti-N-Methyl-D-Aspartate Receptor Encephalitis , Extracellular Traps , Humans , Interleukin-6 , Tumor Necrosis Factor-alpha , Interleukin-8 , CytokinesABSTRACT
Alzheimer's disease is characterized by the presence of distinct amyloid-ß peptide (Aß) assemblies with diverse sizes, shapes, and toxicity. However, the primary determinants of Aß aggregation and neurotoxicity remain unknown. Here, the N-terminal amino acid residues of Aß42 that distinguished between humans and rats were substituted. The effects of these modifications on the ability of Aß to aggregate and its neurotoxicity were investigated using biochemical, biophysical, and cellular techniques. The Aß-derived diffusible ligand, protofibrils, and fibrils formed by the N-terminal mutational peptides, including Aß42(R5G), Aß42(Y10F), and rat Aß42, were indistinguishable by conventional techniques such as size-exclusion chromatography, negative-staining transmission electron microscopy and silver staining, whereas the amyloid fibrillation detected by thioflavin T assay was greatly inhibited in vitro. Using circular dichroism spectroscopy, we discovered that both Aß42 and Aß42(Y10F) generated protofibrils and fibrils with a high proportion of parallel ß-sheet structures. Furthermore, protofibrils formed by other mutant Aß peptides and N-terminally shortened peptides were incapable of inducing neuronal death, with the exception of Aß42 and Aß42(Y10F). Our findings indicate that the N-terminus of Aß is important for its fibrillation and neurotoxicity.
ABSTRACT
Human, rat, and mouse C-reactive protein (CRP) possess distinct expression patterns, but have similar conformations and conserved in vivo functions. We have previously demonstrated that this level-function mismatch is delicately tuned by the hidden activities of unfolded CRP. The cholesterol-binding sequence (CBS; a.a. 35-47) is a major functional motif exposed on monomeric CRP, which is the unfolded and activated conformation of CRP. We replaced the CBS of rat CRP with that of either mouse or human CRP, yielding two grafting mutants with unaffected pentameric assembly. However, these mutants exhibited altered cellular foldability and conformational activation efficiency that matched those of the CRP that provided the grafted CBS. These results indicate that CBS is a critical regulatory motif, whose variation maintains the pentameric assembly of CRP but derives distinct cellular foldabilities and conformational activation efficiencies, therefore helping to ensure that CRPs with various expression patterns exhibit overall conserved functions.
Subject(s)
C-Reactive Protein , Cholesterol , Humans , Mice , Rats , Animals , C-Reactive Protein/chemistry , Protein ConformationABSTRACT
Background: Given that the combination of multiple antibodies in autoimmune encephalitis (AE) is rare and its clinical significance is unclear, this study aimed to investigate the clinical characteristics and significance of overlapping multiple anti-neuronal antibodies in patients with AE. Methods: We conducted a retrospective analysis of the clinical characteristics, treatment, and prognostic details of 22 patients with multiple coexisting antibodies from multiple clinical centers in China. Results: Among the 276 patients who were AE antibody-positive, 22 (7.97%) had two or more antibodies. Among the 22 patients with coexisting AE-related antibodies, 14 patients (63.63%) were combined of cell surface and intracellular antibody, and the remaining 8 patients (36.36%) were detected to be cell surface antibody positive only. The main symptoms of the 22 patients in this cohort included fever, seizures, memory impairment, cognitive decline, and sleep disorders. Five (22.73%) patients had tumors, among whom four had small-cell lung cancers, and one had mediastinal tumors. A total of 20 patients were treated with steroids and intravenous immunoglobulin, and 18 showed varying degrees of symptomatic improvement after first-line immunotherapy. Three patients died of tumor progression or chemotherapy complications. Conclusion: The coexistence of multiple anti-neuronal antibodies in patients with AE may cause a superimposition and diversification of clinical manifestations. Combined paraneoplastic antibody positivity may be suggestive of an underlying malignancy.
Subject(s)
Encephalitis , Hashimoto Disease , Neoplasms , Antibodies/therapeutic use , Encephalitis/diagnosis , Humans , Immunoglobulins, Intravenous/therapeutic use , Neoplasms/complications , Retrospective StudiesABSTRACT
[This corrects the article DOI: 10.3389/fimmu.2022.918731.].
ABSTRACT
The receptor-binding domain (RBD) of the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds to the human angiotensin-converting enzyme 2 (ACE2) receptor, which is a prerequisite for the virus to enter the cell. C-reactive protein (CRP) is an important marker of inflammation and is a putative soluble pattern recognition receptor. Clinical elevation of CRP levels in patients with COVID-19 is one of the characteristics of the disease; however, whether CRP is involved in COVID-19 pathogenesis is unknown. Here, we report that monomeric CRP (mCRP) can bind to the SARS-CoV-2 spike RBD and competitively inhibit its binding to ACE2. Furthermore, truncated mutant peptide competition assays and surface plasmon resonance binding experiments showed that the cholesterol-binding sequence (CBS, amino acids 35-47) in mCRP was critical for mediating the binding of mCRP to spike RBD. In a cell model of spike RBD and ACE2 interaction, the CBS motif effectively reduced the binding of spike RBD to ACE2 overexpressed on the cell surface. Thus, this study highlights the pattern recognition function of mCRP in innate immunity and provides a preliminary theoretical basis for the development of the CBS motif in mCRP into a functional peptide with both diagnostic significance and potential therapeutic capabilities.
Subject(s)
Angiotensin-Converting Enzyme 2 , C-Reactive Protein , COVID-19 , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2/metabolism , C-Reactive Protein/metabolism , Cholesterol , Humans , Receptors, Virus/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolismABSTRACT
The present study aimed to investigate the clinical manifestations, epidemiological characteristics, and outcomes of Chinese patients with voltage-gated potassium channel complex (VGKC) antibody-associated encephalitis. Patients diagnosed with VGKC antibody-associated encephalitis at our institution between January 2016 and December 2020 were included in this study. We retrospectively evaluated their clinical features, auxiliary examination results, treatments details, long-term outcomes, and risk factors for poor outcome. Of the 91 included patients, 61 (67.78%) were men and 30 (32.97%) were women. The most common clinical symptoms were seizures (n = 63, 69.23%), memory deficits (n = 62, 68.13%), mental behavioral disorders (n = 29, 31.87%), and hyponatremia (n = 57, 62.64%). Although patients with anti- leucine-rich glioma-inactivated 1 (LGI1) (n = 76) and anti- contactin-associated protein-like 2 (CASPR2) encephalitis (n = 15) had similar clinical manifestations, the former were more diverse. In total, 86 (94.51%) patients were treated with immunotherapy. Over a median follow-up period of 25 months, there were no mortalities and 14 (15.38%) patients experienced a relapse. Univariate analysis indicated differences in sex, modified Rankin Scale scores at onset, movement disorders, central hypoventilation, and intensive care unit occupancy between the good- and poor- outcome groups. Patients with anti-LGI1 and anti-CASPR2 encephalitis showed similar clinical manifestations while presenting delineating characteristics. Those with VGKC antibody-associated diseases generally responded well to immunotherapy and demonstrated favorable clinical outcomes. Several factors affected the prognosis, and a long-term follow-up examination is necessary.
Subject(s)
Encephalitis , Glioma , Potassium Channels, Voltage-Gated , Autoantibodies , China/epidemiology , Contactin 2 , Encephalitis/diagnosis , Encephalitis/therapy , Female , Hashimoto Disease , Humans , Intracellular Signaling Peptides and Proteins , Leucine , Male , Retrospective StudiesABSTRACT
Biophysical models suggest a dominant role of structural over functional constraints in shaping protein evolution. Selection on structural constraints is linked closely to expression levels of proteins, which together with structure-associated activities determine in vivo functions of proteins. Here we show that despite the up to two orders of magnitude differences in levels of C-reactive protein (CRP) in distinct species, the in vivo functions of CRP are paradoxically conserved. Such a pronounced level-function mismatch cannot be explained by activities associated with the conserved native structure, but is coupled to hidden activities associated with the unfolded, activated conformation. This is not the result of selection on structural constraints like foldability and stability, but is achieved by folding determinants-mediated functional selection that keeps a confined carrier structure to pass the stringent eukaryotic quality control on secretion. Further analysis suggests a folding threshold model which may partly explain the mismatch between the vast sequence space and the limited structure space of proteins.
Subject(s)
C-Reactive Protein , Protein Folding , Quality ControlABSTRACT
BACKGROUND AND AIMS: C-reactive protein (CRP) is a hepatocyte-produced marker of inflammation yet with undefined function in liver injury. We aimed to examine the role of CRP in acetaminophen-induced liver injury (AILI). METHODS: The effects of CRP in AILI were investigated using CRP knockout mice and rats combined with human CRP rescue. The mechanisms of CRP action were investigated in vitro and in mice with Fcγ receptor 2B knockout, C3 knockout, or hepatic expression of CRP mutants defective in complement interaction. The therapeutic potential of CRP was investigated by intraperitoneal administration at 2 or 6 hours post-AILI induction in wild-type mice. RESULTS: CRP knockout exacerbated AILI in mice and rats, which could be rescued by genetic knock-in, adeno-associated virus-mediated hepatic expression or direct administration of human CRP. Mechanistically, CRP does not act via its cellular receptor Fcγ receptor 2B to inhibit the early phase injury to hepatocytes induced by acetaminophen; instead, CRP acts via factor H to inhibit complement overactivation on already injured hepatocytes, thereby suppressing the late phase amplification of inflammation likely mediated by C3a-dependent actions of neutrophils. Importantly, CRP treatment effectively alleviated AILI with a significantly extended therapeutic time window than that of N-acetyl cysteine. CONCLUSION: Our results thus identify CRP as a crucial checkpoint that limits destructive activation of complement in acute liver injury, and we argue that long-term suppression of CRP expression or function might increase the susceptibility to AILI.
Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Chemical and Drug Induced Liver Injury , Acetaminophen/adverse effects , Animals , C-Reactive Protein , Mice , Mice, Inbred C57BL , RatsABSTRACT
C-reactive protein (CRP) is well-known as a sensitive albeit unspecific biomarker of inflammation. In most rheumatic conditions, the level of this evolutionarily highly conserved pattern recognition molecule conveys reliable information regarding the degree of ongoing inflammation, driven mainly by interleukin-6. However, the underlying causes of increased CRP levels are numerous, including both infections and malignancies. In addition, low to moderate increases in CRP predict subsequent cardiovascular events, often occurring years later, in patients with angina and in healthy individuals. However, autoimmune diseases characterized by the Type I interferon gene signature (e.g., systemic lupus erythematosus, primary Sjögren's syndrome and inflammatory myopathies) represent exceptions to the general rule that the concentrations of CRP correlate with the extent and severity of inflammation. In fact, adequate levels of CRP can be beneficial in autoimmune conditions, in that they contribute to efficient clearance of cell remnants and immune complexes through complement activation/modulation, opsonization and phagocytosis. Furthermore, emerging data indicate that CRP constitutes an autoantigen in systemic lupus erythematosus. At the same time, the increased risks of cardiovascular and cerebrovascular diseases in patients diagnosed with systemic lupus erythematosus and rheumatoid arthritis are well-established, with significant impacts on quality of life, accrual of organ damage, and premature mortality. This review describes CRP-mediated biological effects and the regulation of CRP release in relation to aspects of cardiovascular disease and mechanisms of autoimmunity, with particular focus on systemic lupus erythematosus.
ABSTRACT
The present study focuses on the biological synthesis, characterization, and antibacterial activities of silver nanoparticles (AgNPs) using extracellular extracts of Aspergillus japonicus PJ01.The optimal conditions of the synthesis process were: 10 mL of extracellular extracts, 1 mL of AgNO3 (0.8 mol/L), 4 mL of NaOH solution (1.5 mol/L), 30 °C, and a reaction time of 1 min. The characterizations of AgNPs were tested by UV-visible spectrophotometry, zeta potential, scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and thermogravimetric (TG) analyses. Fourier transform infrared spectroscopy (FTIR) analysis showed that Ag+ was reduced by the extracellular extracts, which consisted chiefly of soluble proteins and reducing sugars. In this work, AgNO3 concentration played an important role in the physicochemical properties and antibacterial properties of AgNPs. Under the AgNO3 concentration of 0.2 and 0.8 mol/L, the diameters of AgNPs were 3.8 ± 1.1 and 9.1 ± 2.9 nm, respectively. In addition, smaller-sized AgNPs showed higher antimicrobial properties, and the minimum inhibitory concentration (MIC) values against both E. coli and S. aureus were 0.32 mg/mL.
Subject(s)
Anti-Bacterial Agents , Aspergillus/metabolism , Green Chemistry Technology/methods , Metal Nanoparticles/chemistry , Silver/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacologyABSTRACT
[This corrects the article DOI: 10.3389/fimmu.2018.00234.].