Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters








Publication year range
1.
Food Chem ; 462: 141063, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39226640

ABSTRACT

In this research, the TT-COF(Fe)@NH2-CNTs was innovatively prepared through a post-modification synthetic process functionalized TT-COF@NH2-CNTs with active site (Fe), where TT-COF@NH2-CNTs was prepared via a one-pot strategy using 5,10,15,20-tetrakis (para-aminophenyl) porphyrin (TTAP), 2,3,6,7-tetra (4-formylphenyl) tetrathiafulvalene (TTF) and aminated carbon nanotubes (NH2-CNTs) as raw materials. The complex TT-COF(Fe)@NH2-CNTs material possessed porous structures, outstanding conductivity and rich catalytic sites. Thus, it can be adopted to construct electrochemical sensor with glassy carbon electrode (GCE). The TT-COF(Fe)@NH2-CNTs/GCE can selectively detect luteolin (Lu) with a wide linear plot ranging from 0.005 to 3 µM and a low limit of detection (LOD) of 1.45 nM (S/N = 3). The Lu residues in carrot samples were determined using TT-COF(Fe)@NH2-CNTs sensor and UV-visible (UV-Vis) approach. This TT-COF(Fe)@NH2-CNTs/GCE sensor paves the way for the quantification of Lu through a cost-efficient and sensitive electrochemical approach, which can make a significant step in the sensing field based on crystalline COFs.


Subject(s)
Electrochemical Techniques , Luteolin , Nanotubes, Carbon , Nanotubes, Carbon/chemistry , Luteolin/chemistry , Luteolin/analysis , Electrochemical Techniques/instrumentation , Limit of Detection , Metal-Organic Frameworks/chemistry , Food Contamination/analysis , Catalytic Domain
2.
Chem Commun (Camb) ; 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39259168

ABSTRACT

We develop a novel electrochemiluminescence (ECL) emitter of aqueous-based perovskite quantum dots, with long-term stable ECL emission in aqueous media. Moreover, an electron transfer annihilation mechanism of ECL generation is proposed, revealed by the experimental results. This study opens a door for exploring efficient perovskite-based ECL emitters.

3.
Chemosphere ; 363: 142740, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38971442

ABSTRACT

Removal of organic micropollutants (OMPs) from water, especially hydrophilic and ionized ones, is challenging for water remediation. Herein, porous ß-cyclodextrin polymers (PCPs) with tailored functionalization were prepared based on molecular expansion strategy and sulfonation. Partially benzylated ß-cyclodextrin was knotted by external crosslinker to form PCP1, and knotting PCP1 by expansion molecule generated PCP2. PCP1 and PCP2 were sulfonated to achieve PCP1-SO3H and PCP2-SO3H. Based on systematical adsorption evaluation toward multiple categories of OMPs, it was found that the introduced strong polar -SO3H group could bring strong hydrogen bonding and electrostatic interactions. PCP2 showed the highest surface (998.97 m2/g) displayed more excellent adsorption performance toward neutral and anionic OMPs, and the adsorption mechanism for this property of PCP2 was dominated by hydrophobic interactions. In addition, the PCP1-SO3H with the lowest surface area (39.75 m2/g) rather than PCP2-SO3H with higher surface (519.28 m2/g) exhibited more superior adsorption towards hydrophilic and cationic OMPs, benefiting by hydrogen bonding and electrostatic interactions as well as appropriate porosity. These results not only confirmed the performance enhancement of PCPs through the integration of novel preparation strategy, but also provided fundamental guidance for PCPs design for water remediation.


Subject(s)
Water Pollutants, Chemical , Water Purification , beta-Cyclodextrins , Adsorption , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Porosity , beta-Cyclodextrins/chemistry , Water Purification/methods , Hydrophobic and Hydrophilic Interactions , Polymers/chemistry , Hydrogen Bonding , Cellulose , Cyclodextrins
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124805, 2024 Dec 05.
Article in English | MEDLINE | ID: mdl-39003827

ABSTRACT

A novel fluorimetric ratiometric probe of green and eco-friendily nitrogen-enriched, oxygen-doped carbon nanodots (Cnanodots) was prepared for the quantitative analysis of mercury(II) (HgII) and nitrofurantoin (Nit) in the environmental sewage. The Cnanodots exhibits dual-emission peaks respectively at 345 and 445 nm under 285 nm excitation, with excitation-independent properties. Unexpectedly, this Cnanodots displays two obvious ratiometric responses to HgII and Nit through decreasing the signal at 345 nm and remaining invariable at 445 nm. Experimental results confirm that the highly sensitive analysis of HgII and Nit are achieved respectively based on matching energy-level electron transfer and inner filter effect mechanisms. The fluorescence (FL) ratiometric intensity of [FL345nm/FL445nm] expresses a good linear relationship with the concentration of HgII in the scope of 0.01-20 µM, while the logarithm of [Log(FL0345nm-FL345nm)] on the quenching degree of the probe by Nit also shows a good linear correlation within the range of 0.01-100 µM. The detection limits were calculated to be 4.14 nM for HgII, and 7.84 nM for Nit. Moreover, recovery experiments of Cnanodots for HgII and Nit sensing in real sewage samples obtained satisfactory results, comfirming the feasibility of practical application.

5.
Analyst ; 149(11): 3073-3077, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38752735

ABSTRACT

We prepared novel green, eco-friendly carbon dots as a dual-channel probe for highly sensitive and selective detection of tartrazine (Trz) and palladium(II) (Pd(II)) involving, respectively, FRET and electron transfer mechanisms. Furthermore, the successful utilization of the carbon dots for detecting Trz and Pd(II) in actual samples implies its potential application prospects in analysis.

6.
Analyst ; 149(7): 2045-2050, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38407274

ABSTRACT

Copper ions (Cu2+) play an essential role in various cellular functions, including respiration, nerve conduction, tissue maturation, oxidative stress defense, and iron metabolism. Covalent organic frameworks (COFs) are a class of porous crystalline materials with directed structural designability and high stability due to the combination of different monomers through covalent bonds. In this study, we synthesized a porphyrin-tetrathiazole COF (TT-COF(Zn)) with Zn-porphyrin and tetrathiafulvalene (TTF) as monomers and used it as a photoactive material. The strong light absorption of metalloporphyrin and the electron-rich properties of supplied TTF contribute to its photoelectrochemical performance. Additionally, the sulfur (S) in the TTF can coordinate with Cu2+. Based on these properties, we constructed a highly sensitive photoelectrochemical sensor for detecting Cu2+. The sensor exhibited a linear range from 0.5 nM to 500 nM (R2 = 0.9983) and a detection limit of 0.15 nM for Cu2+. Notably, the sensor performed well when detecting Cu2+ in water samples.

7.
Analyst ; 149(4): 1212-1220, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38214602

ABSTRACT

A fluorometric method based on boron, bromide-codoped carbon dots (BBCNs) was developed for the first time for the highly selective detection of p-nitroaniline (PNA) in wastewater samples. It should be noted that the introduction of bromine greatly increases the molecular polarizability of the probe, which can regulate the energy level matching between the probe and PNA, resulting in the interaction between BBCNs and PNA. In the presence of PNA, the fluorescence of BBCNs is obviously quenched and accompanied by a red shift of the fluorescence band, which might be attributed to the formation of aggregates caused by the polar adsorption of BBCNs and PNA. It is beneficial for constructing a highly selective sensing platform for PNA determination compared to its isomers (o-nitroaniline and m-nitroaniline) through atomic bromine-mediated polarization of the BBCNs. With the help of this mechanism, an excellent linear range of 0.5-300 µM with a low detection limit of 0.24 µM toward PNA was obtained. This work further confirms that there is a significant relationship between the nature of doping elements and the optical and physicochemical properties of fluorescent materials.

8.
Anal Chim Acta ; 1283: 341975, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37977793

ABSTRACT

Sensitive and convenient determination of gallic acid (GA) is vital for food safety. Here, a novel porphyrin (Cu)-based covalent organic framework named as COF(Cu) was successfully synthesized by condensing pre-metalated 5,10,15,20-tetrakis (para-aminophenyl) porphyrin copper (II) and 2,3,6,7-tetra (4-formylphenyl) tetrathiafulvalene ligands. By combining the advantages of porphyrin with tetrathiafulvalene, it may be possible to create a COF with an intrinsically effective charge-transfer channel. In addition, the Cu-N4 type in the COF(Cu) can be regarded as the single-site electrocatalyst. Benefiting from these advantages, the COF(Cu) based electrochemical sensor demonstrated outstanding response to gallic acid (GA). Under the optimal conditions by square wave voltammetry technique, the COF(Cu) modified electrode showed a wide linear range (0.01-1000 µM), a low detection limit (2.81 nM), good reproducibility, acceptable selectivity as well as high stability. Moreover, the established approach was adopted to detect GA in real tea samples with good recoveries, indicating that the COF(Cu) based electrochemical sensor may pave the way for the application in food analysis.

9.
Analyst ; 148(18): 4339-4345, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37580992

ABSTRACT

Meloxicam (Mel), as a powerful and effective anti-inflammatory drug, is commonly employed for the treatment of various inflammatory diseases; however, the use of Mel at high doses or for extended periods could cause severe side effects in human visceral organs. Therefore, a simple, rapid, and reliable method is urgently needed to monitor Mel in biological samples. Herein, novel water-soluble luminescent nano-carbon dots (nano-Cdots) with outstanding physicochemical properties were prepared by a one-pot high-temperature hydrothermal process of ellagic acid and guanidine. The nano-Cdots were further used as an optical probe for the sensitive detection of Mel in serum samples through the cooperative mechanisms of the inner filter effect and photoelectron transfer. By employing this sensor, an excellent linear correlation was achieved between the relative luminescent intensity [(PL0 - PL)/PL0] and the concentration of Mel in the range of 0.1 to 200 µM, with a limit of detection of 34.68 nM (3σ/k). This sensor was effectively employed for the analysis of Mel in real serum samples, implying its potential development prospects for the advancement of drug analysis with carbon-based probes.


Subject(s)
Quantum Dots , Water , Humans , Meloxicam/therapeutic use , Fluorometry , Water/chemistry , Spectrometry, Fluorescence/methods , Carbon/chemistry , Quantum Dots/chemistry , Fluorescent Dyes
10.
Carbohydr Polym ; 312: 120832, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37059548

ABSTRACT

Herein, ß-cyclodextrin-containing hybrid polymers (P1, P2 and P3) were prepared through crosslinking partially benzylated ß-cyclodextrin (PBCD) by octavinylsilsesquioxane (OVS). P1 stood out in screening studies and the residual hydroxyl groups of PBCD was sulfonate-functionalized. The obtained P1-SO3Na showed greatly enhanced adsorption towards cationic MPs and maintained the excellent adsorption performance towards neutral MPs. The rate constants (k2) of cationic MPs upon P1-SO3Na were 9.8-34.8 times larger than those upon P1. The equilibrium uptakes of the neutral and cationic MPs upon P1-SO3Na were above 94.5 %. Meanwhile, P1-SO3Na demonstrated appreciable adsorption capacities, excellent selectivity, effective adsorption of mixed MPs at environmental levels and good reusability. These results confirmed the great potential of P1-SO3Na as effective adsorbent to remove MPs from water.

11.
Carbohydr Polym ; 310: 120719, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36925245

ABSTRACT

Herein, through knitting benzylated ß-cyclodextrin (BnCD) by dimethoxypillar[5]arene (P[5]), porous copolymers (P[5]-BnCDs) containing two kinds of macrocycles were synthesized with yields not <97 %. The molar ratio of P[5]/BnCD greatly influenced the P[5]-BnCDs' porosity and adsorption performance. When the molar ratio of P[5]/BnCD was 4/1, the P[5]-BnCD (4-1), demonstrated a surface area up to 515.95 m2/g and showed fast adsorption kinetic, high adsorption capacity and good reusability towards the model organic micropollutants (OMPs). The adsorption fitted well with the pseudo-second-order and the Langmuir models, while the thermodynamic studies revealed spontaneous physisorption process. The adsorption mechanism was dominant by host-guest and hydrophobic interactions and the adsorption at environmentally relevant concentrations experiments showed the practicality and superiority in extraction of the OMPs at µg/L level. This study paves a way for the development of versatile porous organic polymers with multiple macrocycles for efficient removal of OMPs from water.

12.
ACS Sens ; 7(11): 3272-3277, 2022 11 25.
Article in English | MEDLINE | ID: mdl-36354761

ABSTRACT

Single-cell interrogation with the solid-state nanoprobes enables understanding of the linkage between cellular behavior and heterogeneity. Herein, inspired by the charge property of the organic molecular probe (OMP), a generic ionic current rectification (ICR) single-cell methodology is established, exemplified by subcellular detection of glutathione (GSH) with high selectivity, sensitivity, and recyclability. The as-developed nanosensor can transduce the subcellular OMP-GSH interaction via a sensitive ionic response, which stems from the superior specificity of OMP and its essential charge property. In addition, the nanosensor exhibits good reversibility, since the subsequent tandem reaction after the recognition can well recover the sensing surface. Given the diverse structures and tailorable charge properties of OMP, this work underpins a new and general method of OMP-based ICR single-cell analysis.


Subject(s)
Glutathione , Molecular Probes
13.
Anal Sci ; 38(2): 383-392, 2022 02.
Article in English | MEDLINE | ID: mdl-35314985

ABSTRACT

The functionalization of porous aromatic frameworks (PAFs) is essential for task-specific application of these materials as advanced adsorbents in water treatment. In this study, a carboxyl-functionalized PAF was prepared by the post-synthesis modification of a HOCH2-tagged PAF, which was synthesized from a precursor-designed method. The synthesized PAFs were comprehensively characterized. The targeted PAF-COOH showed hierarchical porosity with the coexistence of micropores and mesopores. The carboxyl groups were distributed homogeneously across the whole material, and its content was as high as 4.18 meq g-1. An equilibrium adsorption isotherms study demonstrated that the adsorption of cationic dyes fitted well to the Langmuir model and the maximum adsorption capacities of methylene blue (b-MB) and phenosafranine obtained at pH 10 were 775.19 and 588.24 mg g-1, respectively. The adsorption kinetics of cationic dyes followed the pseudo-second order kinetic model. Quick kinetics was demonstrated with the k2 for a 100 mg L-1 b-MB solution as high as 2.83 g mg-1 min-1 and the equilibrium time was just 0.5 min. In addition, the dye-loaded PAF-COOH could be regenerated easily and showed excellent reusability. These significant characters indicated a promising prospect of the PAF-COOH for water treatment.


Subject(s)
Environmental Pollutants , Water Purification , Adsorption , Methylene Blue/chemistry , Porosity , Water Purification/methods
14.
Analyst ; 146(14): 4566-4575, 2021 Jul 12.
Article in English | MEDLINE | ID: mdl-34152330

ABSTRACT

p-Nitrophenol and its derivatives can cause serious harm to the health of mankind and the earth's ecosystem. Therefore, it is necessary to develop a novel and rapid detection technology for p-nitrophenol and its derivative. Herein, excellent water-soluble, large-size and dual-emissive neuron cell-analogous carbon-based probes (NCNPs) have been prepared via a solvothermal approach, using o-phenylenediamine as the only precursor, which exhibit two distinctive fluorescence (FL) peaks at 420 and 555 nm under 345 nm excitation. The NCNPs show a neuron cell-like branched structure, are cross-connected, and are in the range of 10-20 nm in skeleton diameter. Interestingly, their blue-green dual-colour fluorescence is quenched by p-nitrophenol or its derivative due to the specific mechanism of the ππ stacking interactions or internal filtration effect. Accordingly, a simple, rapid, direct and free-label ratiometric FL detection of p-nitrophenol is proposed. An excellent linear relationship shows linear regions over the range of 0.1-50 µM between the ratio of the FL intensity (FL555 nm/FL420 nm) and the concentrations of p-nitrophenol. The detection limit is as low as 43 nM (3σ). Importantly, the NCNP-based probe also shows acceptable repeatability and reproducibility for the detection of p-nitrophenol and its derivatives, and the recovery results for p-nitrophenol in real wastewater samples are favourable.


Subject(s)
Quantum Dots , Ecosystem , Fluorescent Dyes , Neurons , Nitrophenols , Reproducibility of Results
15.
Analyst ; 146(3): 874-881, 2021 Feb 07.
Article in English | MEDLINE | ID: mdl-33241796

ABSTRACT

Recently, the development of a novel fluorescent (FL) nanoprobe for ratiometric detection of antibiotics in real-world samples has received more and more attention. In this article, the distinctive optical properties of deep-ultraviolet emission, a narrowed full width at half maximum (∼20 nm) and excitation-independent emission of a carbonized nanoprobe (CNP) were easily prepared by an environmentally friendly approach of solvothermal treatment using melamine as the precursor and H2O as the solvent. The obtained CNP can be further utilized as an efficient ratiometric FL nanoprobe for enrofloxacin (EFC) and feroxacin (FXC) detection based on the fact that the FL quenching of the CNP was accompanied by an FL increase with EFC/FXC based on the inner filter effect (IFE). Under the optimal conditions, excellent linear relationships existed between the relative FL intensity (FL290 nm/FL412 nm, CNP for FL290 nm and antibiotics for FL412 nm) and the concentrations of FXC and EFC in the range of 0.05-500.0 µM and 0.05-200.0 µM, with limits of detection of 21.74 and 22.43 nM (3σ/k), respectively. With the proposed ratiometric FL sensor, FXC and EFC in milk and serum samples can be rapidly and selectively analyzed without tedious pretreatment processes for real-world samples.


Subject(s)
Fluorescent Dyes , Enrofloxacin
16.
Anal Sci ; 36(11): 1379-1383, 2020 Nov 10.
Article in English | MEDLINE | ID: mdl-32655105

ABSTRACT

Here, we present an excellent strategy of unmodified near-ultraviolet fluorescence nitrogen doping carbon nanobelts (NFNCBs) for detecting nimesulide (Nim). After a simple hydrothermal process of uric acid and hydroquinone in DMF solvent, NFNCBs shows the shape of corroded stalactite-like composed of nanobelts aggregates, near-ultraviolet luminescence and a narrowed full width at half maximum. This could improve/change the electronic properties and surface chemical active site, as the result of a sensitive response to Nim. By employing this sensor, the quantitative measurement displays a linear range of 2.0 nM - 100.0 µM with a lower detection limit of 0.21 nM (3σ/k) for Nim. Our work has provided a high selectivity for Nim, which may be capable for pharmaceutical sample analysis in real tablets. Furthermore, the results concerning the recoveries (96.3 - 106.2%) for real sample analysis indicate that this nanoprobe might expand a good avenue to design an effective luminescence nanoprobe for other biologically related drugs.


Subject(s)
Carbon/chemistry , Limit of Detection , Nanostructures/chemistry , Spectrometry, Fluorescence , Sulfonamides/analysis , Ultraviolet Rays , Linear Models , Sulfonamides/chemistry , Tablets/chemistry
17.
Mikrochim Acta ; 187(7): 410, 2020 06 29.
Article in English | MEDLINE | ID: mdl-32601916

ABSTRACT

Bimetallic Ag-Pt nanoparticles decorated on the surface of reduced graphene oxide (Ag-Pt/rGO) were designed and selected as a nanozyme for the assay of hydrogen peroxide. The nanocomposites were prepared through a one-pot reduction of potassium chloroplatinate, silver nitrate, and graphene oxide under ultraviolet irradiation without using any extra chemical reducing agents or surfactants. The successful formation of Ag-Pt/rGO nanocomposites was confirmed by transmission electron microscopy, energy disperse spectroscopy mapping, X-ray photoelectron spectroscopy, and X-ray diffraction analysis. Significantly, Ag-Pt/rGO nanocomposites possessed excellent peroxidase-like activity toward the catalytic oxidation of 3,3',5,5'-tetramethylbenzidine to form a blue product in the presence of hydrogen peroxide. Steady-state kinetics studies suggested that Ag-Pt/rGO nanocomposites had high affinity to hydrogen peroxide. Based on these properties, a convenient and sensitive method for the colorimetric determination of hydrogen peroxide was developed. Under optimal conditions, the absorbance at 652 nm increases linearly in the 10-100 µM and 100 µM-1 mM ranges of hydrogen peroxide concentration, and the detection limit is 0.9 µM (S/N = 3). The method was successfully applied to the determination of hydrogen peroxide in real water samples. Graphical abstract Ag-Pt/rGO nanocomposites were prepared by a one-pot UV irradiation method and used as a novel nanozyme for colorimetric determination of H2O2.

18.
Anal Sci ; 36(10): 1157-1161, 2020 Oct 10.
Article in English | MEDLINE | ID: mdl-32281577

ABSTRACT

In this study, efforts were made to prepare a porous aromatic framework (PAF) with build-in magnetic nanoparticles (Fe3O4-PAF) for use as an efficient adsorbent for the removal of organic pollutants from water. The Fe3O4-PAF showed good handleability and could be recovered easily by magnetic separation. As a proof of concept, the adsorption properties of Fe3O4-PAF were investigated to remove 2,4-dichlorophenol (2,4-DCP) and bisphenol A (BPA) from water. The Fe3O4-PAF showed a fast adsorption rate, high adsorption efficiency and high adsorption capacities. It adsorbed 2,4-DCP (0.1 mmol L-1) and BPA (0.1 mmol L-1) with pseudo-second-order rate constant (k2) of 2.1 and 3.54 g mg-1 min-1, respectively. According to the Langmuir isotherm model, the maximum adsorption capacities of 2,4-DCP and BPA onto Fe3O4-PAF were calculated to be 234.74 and 233.65 mg g-1, respectively. The Fe3O4-PAF also featured good tolerance to harsh conditions, facilitating its application in a real water environment. It could be regenerated easily and reused multiple times without obvious loss of efficiency. In summary, this study provides a general and effective way to improve the handleability of PAFs and expands the practical application of PAF-based materials.

19.
Analyst ; 145(6): 2191-2196, 2020 Mar 21.
Article in English | MEDLINE | ID: mdl-32101219

ABSTRACT

The Au-Hg amalgam anchored on the surface of reduced graphene oxide nanosheets (Au-Hg/rGO) has been synthesized successfully and characterized by various techniques such as transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The Au-Hg/rGO nanocomposites were found to possess excellent peroxidase-like catalytic activity and can quickly catalyze the oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue oxTMB in the presence of H2O2. The obvious color change offered accurate determination of the H2O2 concentration by recording the absorbance at 652 nm using a UV-vis spectrophotometer. The linear response range for H2O2 was from 5 µM to 100 µM and the detection limit was 3.25 µM (S/N = 3). Furthermore, a kinetic study indicated that the catalytic behavior of Au-Hg/rGO nanocomposites followed the typical Michaelis-Menten theory and Au-Hg/rGO nanocomposites showed good affinity for H2O2. We envision that the simple and sensitive colorimetric detection system holds great promising applications in clinical diagnostics and food and environment monitoring.


Subject(s)
Graphite/chemistry , Hydrogen Peroxide/analysis , Nanostructures/chemistry , Peroxidase/chemistry , Benzidines/chemistry , Biomimetic Materials/chemistry , Catalysis , Chromogenic Compounds/chemistry , Colorimetry/methods , Gold/chemistry , Mercury/chemistry , Nanostructures/ultrastructure , Water/analysis
20.
ACS Appl Bio Mater ; 3(12): 9031-9042, 2020 Dec 21.
Article in English | MEDLINE | ID: mdl-35019580

ABSTRACT

The development of near-infrared (NIR) emission nanoprobes for the ratiometric fluorescent determination of living cells in vitro/vivo is of great analytical importance. In this work, dual-NIR-emissive Zn-doped carbon-based nanosheets (Zn-CNSHs) were prepared with a beneficial and special donor-π-acceptor-conjugated (D-π-A-conjugated) spatial framework, which resulted in not only a much lower HOMO-LUMO energy level but also excellent biocompatibility and physicochemical properties. The Zn-CNSHs were prepared by simple one-pot solvothermal synthesis with zinc gluconate (ZGN) and a strong acid and exhibited two distinctive photoluminescence (PL) peaks at 620 and 720 nm with the 600 nm excitation. The 620 nm peak intensity was dependent on dipicolinic acid (DPA) owing to the aggregation-induced emission enhancement effect via the strong intersheet hydrogen bonds between Zn-CNSHs and DPA, enabling the ratiometric fluorescent determination of DPA, an important clinical anthrax biomarker. An excellent calibration curve showed linear regions over the range of 0.05-500 µM between the ratio of PL intensity (PL620 nm/PL720 nm) and the concentrations of DPA. The detection limit was down to 21.7 nM. Based on the high stability, low cytotoxicity, high selectivity, and outstanding PL-reliant sensitivity for the DPA assay, the nanoprobe has been successfully used to monitor DPA in serum, wastewater, and cells.

SELECTION OF CITATIONS
SEARCH DETAIL