Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 339
Filter
1.
J Environ Sci (China) ; 148: 489-501, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095183

ABSTRACT

The chemistry of sulfur cycle contributes significantly to the atmospheric nucleation process, which is the first step of new particle formation (NPF). In the present study, cycloaddition reaction mechanism of sulfur trioxide (SO3) to hydrogen sulfide (H2S) which is a typical air pollutant and toxic gas detrimental to the environment were comprehensively investigate through theoretical calculations and Atmospheric Cluster Dynamic Code simulations. Gas-phase stability and nucleation potential of the product thiosulfuric acid (H2S2O3, TSA) were further analyzed to evaluate its atmospheric impact. Without any catalysts, the H2S + SO3 reaction is infeasible with a barrier of 24.2 kcal/mol. Atmospheric nucleation precursors formic acid (FA), sulfuric acid (SA), and water (H2O) could effectively lower the reaction barriers as catalysts, even to a barrierless reaction with the efficiency of cis-SA > trans-FA > trans-SA > H2O. Subsequently, the gas-phase stability of TSA was investigated. A hydrolysis reaction barrier of up to 61.4 kcal/mol alone with an endothermic isomerization reaction barrier of 5.1 kcal/mol under the catalytic effect of SA demonstrates the sufficient stability of TSA. Furthermore, topological and kinetic analysis were conducted to determine the nucleation potential of TSA. Atmospheric clusters formed by TSA and atmospheric nucleation precursors (SA, ammonia NH3, and dimethylamine DMA) were thermodynamically stable. Moreover, the gradually decreasing evaporation coefficients for TSA-base clusters, particularly for TSA-DMA, suggests that TSA may participate in NPF where the concentration of base molecules are relatively higher. The present new reaction mechanism may contributes to a better understanding of atmospheric sulfur cycle and NPF.


Subject(s)
Air Pollutants , Hydrogen Sulfide , Models, Chemical , Hydrogen Sulfide/chemistry , Air Pollutants/chemistry , Cycloaddition Reaction , Atmosphere/chemistry , Sulfur Oxides/chemistry , Kinetics , Sulfur/chemistry
2.
Signal Transduct Target Ther ; 9(1): 261, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39353908

ABSTRACT

Small-cell lung cancer (SCLC) transformation accounts for 3-14% of resistance in EGFR-TKI relapsed lung adenocarcinomas (LUADs), with unknown molecular mechanisms and optimal treatment strategies. We performed transcriptomic analyses (including bulk and spatial transcriptomics) and multiplex immunofluorescence on pre-treated samples from LUADs without transformation after EGFR-TKI treatment (LUAD-NT), primary SCLCs (SCLC-P) and LUADs with transformation after EGFR-TKI treatment (before transformation: LUAD-BT; after transformation: SCLC-AT). Our study found that LUAD-BT exhibited potential transcriptomic characteristics for transformation compared with LUAD-NT. We identified several pathways that shifted during transformation, and the transformation might be promoted by epigenetic alterations (such as HDAC10, HDAC1, DNMT3A) within the tumor cells instead of within the tumor microenvironment. For druggable pathways, transformed-SCLC were proved to be less dependent on EGF signaling but more relied on FGF signaling, while VEGF-VEGFR pathway remained active, indicating potential treatments after transformation. We also found transformed-SCLC showed an immuno-exhausted status which was associated with the duration of EGFR-TKI before transformation. Besides, SCLC-AT exhibited distinct molecular subtypes from SCLC-P. Moreover, we constructed an ideal 4-marker model based on transcriptomic and IHC data to predict SCLC transformation, which obtained a sensitivity of 100% and 87.5%, a specificity of 95.7% and 100% in the training and test cohorts, respectively. We provided insights into the molecular mechanisms of SCLC transformation and the differences between SCLC-AT and SCLC-P, which might shed light on prevention strategies and subsequent therapeutic strategies for SCLC transformation in the future.


Subject(s)
Adenocarcinoma of Lung , Cell Transformation, Neoplastic , ErbB Receptors , Lung Neoplasms , Humans , ErbB Receptors/genetics , ErbB Receptors/metabolism , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , Cell Transformation, Neoplastic/genetics , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/pathology , Small Cell Lung Carcinoma/drug therapy , Mutation , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/genetics , Female , Male , Protein Kinase Inhibitors/pharmacology
3.
Future Oncol ; : 1-12, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39360943

ABSTRACT

Aim: We investigated association between skin adverse events (AEs) and efficacy with dacomitinib in patients with EGFR-positive non-small-cell lung cancer (NSCLC).Methods: Post hoc analyses from ARCHER 1050 evaluated efficacy in patients who did and did not experience grade ≥2 skin AEs with dacomitinib. Landmark analyses were performed at 3 and 6 months.Results: In patients who had skin AEs (72.2%) vs. those who did not (27.7%), median progression-free survival was 16.0 vs. 9.2 months, median overall survival (OS) was 37.7 vs. 21.6 months, and objective response rate was 80.2 vs. 61.5%; OS was improved at 3 and 6 months landmark analyses.Conclusion: Presence of grade ≥2 skin AEs was associated with numerically improved efficacy and represents a valuable biomarker of treatment outcome with dacomitinib in patients with advanced NSCLC.Clinical Trial Registration: NCT01774721 (ClinicalTrials.gov).


The ARCHER 1050 study assessed how the drugs called dacomitinib and gefitinib affected people with non-small-cell lung cancer (NSCLC) who had mutations in the EGFR gene. In this study, people who were treated with dacomitinib lived longer without their cancer getting worse than people who were treated with gefitinib. Skin adverse reactions were higher in people who were treated with dacomitinib than gefitinib. In this follow-up analysis, researchers wanted to see if the treatment effect of dacomitinib was different between people who had skin adverse reactions and people who did not have skin adverse reactions after treatment with dacomitinib. The results from this analysis showed that after treatment with dacomitinib, half of the people who had skin adverse reactions lived for 16.0 months, and half of the people who did not have skin adverse reactions lived for 9.2 months without their cancer getting worse. This study also showed that half of the people who had skin adverse reactions lived for 37.7 months, and half of the people who did not have skin adverse reactions lived for 21.6 months. In summary, the results from this study showed that the treatment effect of dacomitinib was better in people who had skin adverse reactions after treatment with dacomitinib. Therefore, skin adverse reactions can be a marker of better treatment effect in people with NSCLC who had mutations in the EGFR gene when treated with dacomitinib.

4.
Chin J Cancer Res ; 36(4): 398-409, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39246703

ABSTRACT

Objective: To provide real-world evidence for the application of first-line dacomitinib treatment for epidermal growth factor receptor (EGFR) 21L858R mutant non-small cell lung cancer (NSCLC) patients in China and to explore the factors influencing the efficacy and safety. Methods: A longitudinal, consecutive case-series, multicenter study with mixed prospective and retrospective data was conducted. The primary endpoint was progression-free survival (PFS), and the secondary endpoints included duration of treatment (DOT), overall survival (OS), objective response rate (ORR), disease control rate (DCR) and safety. Results: A total of 155 EGFR 21L858R mutant patients treated with first-line dacomitinib were included. The median follow-up time for these patients was 20.4 months. Among 134 patients with evaluable lesions, the ORR was 70.9% and the DCR was 96.3%. The median PFS was 16.3 [95% confidence interval (95% CI), 13.7-18.9] months. Multivariate Cox regression analysis suggested that the baseline brain metastasis (BM) status [with vs. without BM: hazard ratio (HR), 1.331; 95% CI, 0.720-2.458; P=0.361] and initial doses (45 mg vs. 30 mg: HR, 0.837; 95% CI, 0.427-1.641; P=0.604) did not significantly affect the median PFS. The median DOT was 21.0 (95% CI, 17.5-24.6) months and the median OS was not reached. Genetic tests were performed in 64 patients after progression, among whom 29 (45.3%) patients developed the EGFR 20T790M mutation. In addition, among the 46 patients who discontinued dacomitinib treatment after progression, 31 (67.4%) patients received subsequent third-generation EGFR-tyrosine kinase inhibitors. The most common grade 3-4 adverse events were rash (10.4%), diarrhea (9.1%), stomatitis (7.1%) and paronychia (4.5%). The incidence of grade 3-4 rash was significantly higher in the 45 mg group than that in the 30 mg group (21.9% vs. 7.5%, P=0.042). Conclusions: First-line dacomitinib treatment demonstrated promising efficacy and tolerable adverse events among EGFR 21L858R mutant NSCLC patients in China.

5.
Gels ; 10(8)2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39195049

ABSTRACT

Polyvinyl alcohol (PVA)/TiO2/colloidal photonic crystal (CPC) films with photocatalytic properties are presented, where TiO2 nanoparticles were introduced into the PVA gel network. Such PVA/TiO2/CPC films possess three-dimensional periodic structures that are supported with a PVA/TiO2 composite gel. The unique structural color of CPCs can indicate the process of material preparation, adsorption, and desorption. The shift of diffraction peaks of CPCs can be more accurately determined using fiber-optic spectroscopy. The effect of the PVA/TiO2/CPC catalyst films showed better properties as the degradation of methylene blue (MB) by the PVA/TiO2/CPC film catalyst in 4 h was 77~90%, while the degradation of MB by the PVA/TiO2 film was 33% in 4 h, indicating that the photonic crystal structure was 2.3~2.7 times more effective than that of the bulk structure.

6.
Front Pharmacol ; 15: 1383624, 2024.
Article in English | MEDLINE | ID: mdl-39135796

ABSTRACT

Background: An accumulating body of research indicates that the pons is related to the occurrence of depression. Si-Ni-San (SNS) is a well-known Chinese herbal formula that is used to treat depression. Chinese herbal formulae have multiple therapeutic characteristics. Although it has been proven that SNS can exert antidepressant effects by improving changes in the limbic system, it is currently unclear whether SNS has therapeutic targets in the pons. This study aimed to explore the therapeutic targets of SNS in the pons for depression treatment. Materials and methods: Two experiments were conducted. In Experiment 1, 32 rats were divided into four groups: (1) a Control (C) group that received distilled water as a vehicle; (2) a Model (M) group that received the chronic unpredictable mild stress (CUMS) procedure and was administered distilled water; (3) a Stress + SNS (MS) group that received the CUMS procedure and was administered SNS dissolved in distilled water; and (4) a Stress + Fluoxetine (MF) group that received the CUMS procedure and was administered fluoxetine dissolved in distilled water. The open field test (OFT), the sucrose preference test (SPT), and the novel object recognition test (NOR) were performed to test the antidepressant effects of SNS. High-throughput mRNA sequencing (RNA-seq) was used to explore possible gene targets of SNS in the pons, and quantitative real-time PCR was performed to verify the results. High-performance liquid chromatography was used to detect neurotransmitters. Finally, correlation analyses were conducted between behaviors, genes expression, and neurotransmitters. In Experiment 2, 18 rats were divided into the same three groups as in Experiment 1: (1) C, (2) M, and (3) MS. fMRI was used to confirm whether SNS altered the pons in a rat model of depression. Results: SNS significantly improved sucrose preference in the SPT and TN-TO in the NOR compared to the M group (P < 0.05). RNA-seq filtered 49 differentially expressed genes(DEGs) that SNS could reverse in the pons of the CUMS depression model. Real-time PCR detected six genes, including Complexin2 (Cplx2), Serpinf1, Neuregulin1 (Nrg1), Annexin A1 (Anxa1), ß-arrestin 1 (Arrb1) and presenilin 1 (Psen1). SNS significantly reversed changes in the expression of Anxa1, Nrg1, and Psen1 caused by CUMS (P < 0.05), which is consistent with the DEGs results. Additionally, SNS significantly reversed norepinephrine (NE) changes in the pons. There were 18 noteworthy correlations between behavior, genes, and neurotransmitters (P < 0.05). fMRI showed that SNS can decrease the amplitude of low-frequency fluctuations (ALFF) in the pons of living depressed rats. Conclusion: The pons is an important target brain region for SNS to exert its antidepressant effects. SNS may improve pontine NE levels by regulating the Anxa1, Nrg1, and Psen1 genes, thereby exerting antidepressant effects and improving cognitive function.

7.
Article in English | MEDLINE | ID: mdl-39134871

ABSTRACT

The balance between oxidation and antioxidation is crucial for the development of embryo. It is harmful to the early embryonic development if embryonic stem cells (ESCs) encounter the serious oxidative stress in vivo. Induced pluripotent stem cells (iPSCs) are very similar to ESCs and are the important cell source to replace ESCs for research and therapy. Studies show that iPSCs have better resistant ability to oxidative stress, but the involved mechanism remains unclear. In this study, we predicted that the NF-κB pathway might be involved in H2O2-induced developmental damage by network toxicology analysis. Then, the oxidative stress model was established with different concentrations of H2O2 to investigate the mechanism of NF-κB pathway in oxidative stress of human induced pluripotent stem cells (hiPSCs). The results showed as follows: With the increase of H2O2 concentration, the ROS level gradually went up leading to an increasing damage degree of hiPSCs; however, the MDA content was obviously high only in the 400 µM H2O2 group; the activities of some antioxidant indexes such as SOD2 and T-AOC were significantly upregulated in the 100 µM group, while most of antioxidant indexes showed downregulated tendency to different degrees with the increase of H2O2 concentration. The expression levels of P65, P50, IκB, SOD2, and FHC mRNA were upregulated in most H2O2-treated groups, showing a dose-dependent relationship. In subsequent experiments, the inhibitor of IκB-α phosphorylation, Bay11-7082, reversed the upregulation of P65, IκB, and FHC mRNA expression induced by 400 µM H2O2. The protein levels of P65, p-P65, P50, p-P50, IκB, p-IκB, SOD2, and FHC were upregulated in most H2O2-treated groups. However, the upregulation induced by 400 µM H2O2 could be reversed by BAY 11-7082, except for IκB and SOD2. In conclusion, H2O2 could promote the expressions and phosphorylations of NF-κB that could upregulate the expressions of its downstream antioxidant genes to minimize the damage of hiPSCs caused by oxidative stress. These results contribute to a fundamental understanding of the antioxidant mechanism of iPSCs and will further facilitate the application of iPSCs, as well as provide a reference for controlling the oxidative stress encountered in the early development stage of embryo.

8.
World J Diabetes ; 15(6): 1234-1241, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38983819

ABSTRACT

BACKGROUND: Dry eye syndrome (DES) after diabetic cataract surgery can seriously affect the patient's quality of life. Therefore, effective alleviation of symptoms in patients with this disease has important clinical significance. AIM: To explore the clinical effect of recombinant human epidermal growth factor (rhEGF) plus sodium hyaluronate (SH) eye drops on DES after cataract surgery in patients with diabetes. METHODS: We retrospectively evaluated 82 patients with diabetes who experienced DES after cataract surgery at Tianjin Beichen Hospital, Affiliated Hospital of Nankai University between April 2021 and April 2023. They were classified into an observation group (42 cases, rhEGF + SH eye drops) and a control group (40 cases, SH eye drops alone), depending on the different treatment schemes. The thera-peutic efficacy, dry eye symptom score, tear film breakup time (TFBUT), basic tear secretion score [assessed using Schirmer I test (SIt)], corneal fluorescein staining (FL) score, tear inflammatory markers, adverse reactions during treatment, and treatment satisfaction were compared between the two groups. RESULTS: Therapeutic efficacy was higher in the observation group compared with the control group. Both groups showed improved TFBUT and dry eye, as well as improved SIt and FL scores after treatment, with a more pronounced improvement in the observation group. Although no marked differences in adverse reactions were observed between the two groups, treatment satisfaction was higher in the observation group. CONCLUSION: rhEGF + SH eye drops rendered clinical benefits to patients by effectively ameliorating dry eye and visual impairment with favorable efficacy, fewer adverse reactions, and high safety levels. Thus, this treatment should be promoted in clinical practice.

9.
Ecotoxicol Environ Saf ; 283: 116804, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39083871

ABSTRACT

Bisphenol A (BPA), a typical environmental endocrine disruptor, has raised concerns among researchers due to its toxicological effects. Whether neohesperidin (NEO) can intervene in the toxic effects of BPA remains unknown. This study aims to investigate the effects and mechanisms of NEO on the myogenic differentiation of umbilical cord-derived mesenchymal stem cells (UC-MSCs) exposed to BPA. Sheep UC-MSCs were isolated, characterized, and induced to myogenic differentiation. BPA decreased cell viability, cell migration, and the expressions of myogenic marker genes, leading to myogenic differentiation inhibition, which were reversed by NEO. Network pharmacology suggested the IGF1R/AKT1/RHOA pathway as potential targets of BPA and NEO regulating muscle development. Western blot results showed that NEO could reverse the down-regulation of the pathway proteins induced by BPA, and counteract the effects of picropodophyllin (PPP) or MK-2206 dihydrochloride (MK-2206) in the myogenic differentiation of sheep UC-MSCs. Additionally, the expression levels of (p-) IGF1R, AKT1, and RHOA were positively correlated. Taken together, the mechanisms of NEO resistance to BPA involved the IGF1R/AKT1/RHOA signaling pathway. These findings provide a scientific basis for alleviating BPA toxicity, preventing and treating muscular dysplasia, and promoting muscle damage repair.


Subject(s)
Benzhydryl Compounds , Cell Differentiation , Hesperidin , Mesenchymal Stem Cells , Phenols , Proto-Oncogene Proteins c-akt , Receptor, IGF Type 1 , Signal Transduction , Mesenchymal Stem Cells/drug effects , Benzhydryl Compounds/toxicity , Phenols/toxicity , Proto-Oncogene Proteins c-akt/metabolism , Animals , Signal Transduction/drug effects , Cell Differentiation/drug effects , Receptor, IGF Type 1/metabolism , Receptor, IGF Type 1/genetics , Hesperidin/pharmacology , Hesperidin/analogs & derivatives , rhoA GTP-Binding Protein/metabolism , Umbilical Cord/cytology , Umbilical Cord/drug effects , Endocrine Disruptors/toxicity , Sheep , Muscle Development/drug effects , Cell Survival/drug effects
10.
J Transl Med ; 22(1): 585, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902768

ABSTRACT

BACKGROUND: In the era of second-generation ALK tyrosine kinase inhibitors (ALK-TKIs), there was a paucity of data regarding the progression patterns, resistant mechanisms, and subsequent therapeutic approaches for ALK-positive (ALK+) non-small cell lung cancer (NSCLC). METHODS: Patients with advanced ALK+ NSCLC were retrospectively selected from our center. Cohort 1 consisted of patients who experienced disease progression after receiving first-line alectinib treatment (n = 20), while Cohort 2 included patients who progressed following sequential treatment with crizotinib and second-generation ALK-TKIs (n = 53). Oligo-progression was defined as the occurrence of disease progression in no more than three lesions. Symptomatic progression was determined when patients developed new symptoms or experienced worsening of pre-existing symptoms during radiological progression. RESULTS: The incidence of central nervous system (CNS) progression and symptomatic CNS progression was significantly lower in Cohort 1 compared to patients treated with crizotinib, with rates of 15.0% vs. 56.6% (p = 0.002) and 5.0% vs. 32.1% (p = 0.016), respectively. A total of 60.3% (44/73) patients underwent repeated biopsy and next-generation sequencing subsequent to the second-generation ALK-TKI resistance, with secondary mutation in ALK kinase domain emerging as the predominant mechanism of resistance (56.8%). Local therapy was applied to 50% of oligo-progression cases. Subsequent ALK-TKIs demonstrated significantly prolonged progression-free survival (PFS) (8.6 m vs. 2.7 m, p = 0.021, HR = 0.43, 95%CI: 0.15-0.85) and long-term overall survival (OS) (NA vs. 11.9 m, p = 0.132, HR = 0.50, 95%CI: 0.18-1.25) in patients harboring ALK resistance mutations, compared to those without such mutations. For patients without ALK-resistant mutations following progression on second-generation ALK-TKIs, there was no statistically significant difference in survival outcomes between subsequent chemotherapy or alternative ALK-TKI treatments. CONCLUSIONS: First-line alectinib demonstrated superior efficacy in protecting the CNS compared to crizotinib. For patients with ALK-resistant mutations following the resistance to second-generation ALK-TKIs, appropriate sensitive ALK-TKI should be administered; for those without such mutations, the selection of chemotherapy or third-generation ALK-TKI should be based on the patient's overall physical health and personal preferences.


Subject(s)
Anaplastic Lymphoma Kinase , Carcinoma, Non-Small-Cell Lung , Disease Progression , Drug Resistance, Neoplasm , Lung Neoplasms , Protein Kinase Inhibitors , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Anaplastic Lymphoma Kinase/metabolism , Anaplastic Lymphoma Kinase/genetics , Anaplastic Lymphoma Kinase/antagonists & inhibitors , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Male , Female , Middle Aged , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Aged , Adult , Crizotinib/therapeutic use , Crizotinib/pharmacology , Retrospective Studies , Mutation/genetics
11.
Chemosphere ; 359: 142306, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38734255

ABSTRACT

Amino acids (AAs) account for about 15-35% of dissolved organic nitrogen (DON), and are known as the important precursors of nitrogenous disinfection by-products (N-DBPs). Determining the formation potential (FP) of AAs to DBPs is used to reveal the key precursors of DBPs for further control, while the ideal method for N-DBPs FP of AAs during chlorination is not revealed. In this study, the ideal FP test models for five classes of priority DBPs during chlorination of four representative AAs (accounted for about 35% of total AAs) were analyzed. For haloaldehydes (HALs), haloketones (HKs), haloacetonitriles (HANs), haloacetamides (HAMs), and halonitromethanes (HNMs), their FPs during chlorination of four AAs were 0.1-13.0, 0.01-1.1, 0.1-104, not detectable (nd)-173, and nd-0.4 µg/mg, respectively. The FPs of priority DBPs had significant deviations between different FP test models and different tested AAs. For HALs, the model, whose chlorine dosage was determined by 15 × molar concentration of AAs [Cl (mM) = 15 × M](named: model II), was the ideal model. For HKs, model II was also the ideal FP test model for AAs with ≤3 carbons, while for AAs with 4 carbons, the model, whose chlorine dosage was determined by keeping the residual chlorine at 1 ± 0.2 mg/L after 24 h of reaction (named: model 4), was the ideal model. For HANs and HNMs, model 4 was the ideal FP test model for most of the studied AAs. The performance of HAMs during chlorination of amino acids was totally different from other P-DBPs, and model 3 was recommended to be the ideal model, in which chlorine dosage was determined by 3 × mass concentration of AAs [Cl (mg/L) = X × DOC]. This study is a reference that helps researchers select an ideal model for N-DBPs FP study of AAs.


Subject(s)
Amino Acids , Chlorine , Disinfectants , Disinfection , Halogenation , Water Pollutants, Chemical , Amino Acids/chemistry , Amino Acids/analysis , Chlorine/chemistry , Disinfectants/chemistry , Disinfectants/analysis , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods
12.
Microbiol Spectr ; 12(6): e0367123, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38690912

ABSTRACT

Lipid droplets (LDs) are dynamic organelles that participate in the regulation of lipid metabolism and cellular homeostasis inside of cells. LD-associated proteins, also known as perilipins (PLINs), are a family of proteins found on the surface of LDs that regulate lipid metabolism, immunity, and other functions. In silkworms, pébrine disease caused by infection by the microsporidian Nosema bombycis (Nb) is a severe threat to the sericultural industry. Although we found that Nb relies on lipids from silkworms to facilitate its proliferation, the relationship between PLINs and Nb proliferation remains unknown. Here, we found Nb infection caused the accumulation of LDs in the fat bodies of silkworm larvae. The characterized perilipin1 gene (plin1) promotes the accumulation of intracellular LDs and is involved in Nb proliferation. plin1 is similar to perilipin1 in humans and is conserved in all insects. The expression of plin1 was mostly enriched in the fat body rather than in other tissues. Knockdown of plin1 enhanced Nb proliferation, whereas overexpression of plin1 inhibited its proliferation. Furthermore, we confirmed that plin1 increased the expression of the Domeless and Hop in the JAK-STAT immune pathway and inhibited Nb proliferation. Taken together, our current findings demonstrate that plin1 inhibits Nb proliferation by promoting the JAK-STAT pathway through increased expression of Domeless and Hop. This study provides new insights into the complicated connections among microsporidia pathogens, LD surface proteins, and insect immunity.IMPORTANCELipid droplets (LDs) are lipid storage sites in cells and are present in almost all animals. Many studies have found that LDs may play a role in host resistance to pathogens and are closely related to innate immunity. The present study found that a surface protein of insect lipid droplets could not only regulate the morphological changes of lipid droplets but also inhibit the proliferation of a microsporidian pathogen Nosema bombycis (Nb) by activating the JAK-STAT signaling pathway. This is the first discovery of the relationship between microsporidian pathogen and insect lipid surface protein perilipin and insect immunity.


Subject(s)
Bombyx , Insect Proteins , Janus Kinases , Lipid Droplets , Nosema , Perilipin-1 , Signal Transduction , Bombyx/microbiology , Bombyx/metabolism , Bombyx/genetics , Animals , Nosema/metabolism , Nosema/genetics , Insect Proteins/metabolism , Insect Proteins/genetics , Lipid Droplets/metabolism , Janus Kinases/metabolism , Janus Kinases/genetics , Perilipin-1/metabolism , Perilipin-1/genetics , STAT Transcription Factors/metabolism , STAT Transcription Factors/genetics , Fat Body/metabolism , Larva/microbiology , Larva/metabolism , Lipid Metabolism
13.
Sci Rep ; 14(1): 8048, 2024 04 05.
Article in English | MEDLINE | ID: mdl-38580804

ABSTRACT

The study aimed to assess the effect and mechanism of safflower injection in preventing retinal vein thrombosis in rabbits. Twenty healthy adult pigmented rabbits were randomly assigned to either the experimental group, receiving safflower injection, or the control group, receiving normal saline. After two weeks of treatment, blood samples were collected to analyze platelet adhesion and aggregation rates. Photodynamic therapy was applied to induce occlusion in the target retinal vein. Fundus photography and fluorescein angiography were recorded using a dynamic microscopic monitoring system, and laser speckle imaging was employed to assess blood flow in the affected vein. The experimental group exhibited significantly lower rates of platelet adhesion and aggregation compared to the control group. Following the induction of retinal vein occlusion, the experimental group showed a lower complete occlusion rate of the target retinal vein. Although initial blood flow in the target vein was similar between groups, the blood flow at 1, 3, and 5 min post-occlusion was significantly higher in the experimental group. Safflower injection delayed retinal vein thrombosis formation, preserved blood flow in the affected retinal area, and reduced platelet adhesion and aggregation. These effects facilitated vascular reperfusion within a limited timeframe.


Subject(s)
Carthamus tinctorius , Retinal Vein Occlusion , Retinal Vein , Animals , Rabbits , Retinal Vein Occlusion/drug therapy , Disease Models, Animal , Retina , Fluorescein Angiography
14.
Expert Rev Anticancer Ther ; 24(3-4): 183-192, 2024.
Article in English | MEDLINE | ID: mdl-38526910

ABSTRACT

OBJECTIVES: We hypothesize that digital droplet polymerase chain reaction (ddPCR) would optimize the treatment strategies in epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) relapsed patients. In this study, we compared the efficacy of third-generation TKIs with various T790M statuses via ddPCR and next-generation sequencing (NGS). METHODS: NGS was performed on blood samples of patients progressed from previous EGFR-TKIs for resistance mechanism. T790M-negative patients received further liquid biopsy using ddPCR for T790M detection. RESULTS: A cohort of 40 patients were enrolled, with 30.0% (12/40) T790M-positive via NGS (Group A). In another 28 T790M-negative patients by NGS, 11 (39.3%) were T790M-positive (Group B) and 17 (60.7%) were T790M-negative (Group C) via ddPCR. A relatively longer progression-free survival (PFS) was observed in group A (NR) and group B (10.0 months, 95% CI 7.040-12.889) than in group C (7.0 months, 95% CI 0.000-15.219), with no significant difference across all three groups (p = 0.196), or between group B and C (p = 0.412). EGFR-sensitive mutation correlated with inferior PFS (p = 0.041) and ORR (p = 0.326), and a significantly lower DCR (p = 0.033) in T790M-negative patients via NGS (n = 28). CONCLUSION: This study indicates that ddPCR may contribute as a supplement to NGS in liquid biopsies for T790M detection in EGFR-TKIs relapsed patients and help to optimize the treatment strategies, especially for those without coexistence of EGFR-sensitive mutation. TRIAL REGISTRATION: www.clinicaltrials.gov identifier is NCT05458726.

15.
PLoS One ; 19(3): e0299999, 2024.
Article in English | MEDLINE | ID: mdl-38451992

ABSTRACT

Rice blast, caused by rice blast fungus (Magnaporthe oryzae), is a global threat to food security, with up to 50% yield losses. Panicle blast is a severe form of rice blast, and disease responses vary between cultivars with different genotypes. Reactive oxygen species (ROS)-mediated signaling reactions and the phenylpropanoid pathway are important defense mechanisms involved in recognizing and resisting against fungal infection. To understand rice-M. oryzae interactions in resistant and susceptible cultivars, we determined dynamic changes in the activities of five defense-related enzymes in resistant cultivar jingsui 18 and susceptible cultivar jinyuan 899 infected with M. oryzae from 4 to 25 days after infection. We then performed untargeted metabolomics analyses to profile the metabolomes of the cultivars under infected and non-infected conditions. Dynamic changes in the activities of five defense-related enzymes were closely related to panicle blast resistance in rice. Metabolome data analysis identified 634 differentially accumulated metabolites (DAMs) between resistant and susceptible cultivars following infection, potentially explaining differences in disease response between varieties. The most enriched DAMs were associated with lipids and lipid-like molecules, phenylpropanoids and polyketides, organoheterocyclic compounds, organic acids and derivatives, and lignans, neolignans, and related compounds. Multiple metabolic pathways are involved in resistance to panicle blast in rice, including biosynthesis of other secondary metabolites, amino acid metabolism, lipid metabolism, phenylpropanoid biosynthesis, arachidonic acid metabolism, arginine biosynthesis, tyrosine metabolism, tryptophan metabolism, tyrosine and tryptophan biosynthesis, lysine biosynthesis, and oxidative phosphorylation.


Subject(s)
Ascomycota , Magnaporthe , Oryza , Disease Resistance/genetics , Oryza/genetics , Magnaporthe/genetics , Tryptophan/metabolism , Tyrosine/metabolism , Plant Diseases/microbiology
16.
Pestic Biochem Physiol ; 199: 105803, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38458661

ABSTRACT

Tobacco black shank (TBS) is a soil-borne fungal disease caused by Phytophthora nicotiana (P. nicotianae), significantly impeding the production of high-quality tobacco. Molybdenum (Mo), a crucial trace element for both plants and animals, plays a vital role in promoting plant growth, enhancing photosynthesis, bolstering antioxidant capacity, and maintaining ultrastructural integrity. However, the positive effect of Mo on plant biotic stress is little understood. This study delves into the inhibitory effects of Mo on P. nicotianae and seeks to unravel the underlying mechanisms. The results showed that 16.32 mg/L of Mo significantly inhibited mycelial growth, altered mycelial morphological structure, damaged mycelial cell membrane, and ultimately led to the leakage of cell inclusions. In addition, 0.6 mg/kg Mo applied in soil significantly reduced the severity of TBS. Mo increased photosynthetic parameters and photosynthetic pigment contents of tobacco leaves, upregulated expression of NtPAL and NtPPO resistance genes, as well as improved activities of SOD, POD, CAT, PPO, and PAL in tobacco plants. Furthermore, Mo could regulate nitrogen metabolism and amino acids metabolism to protect tobacco plants against P. nicotianae infection. These findings not only present an ecologically sound approach to control TBS but also contribute valuable insights to the broader exploration of the role of microelements in plant disease management.


Subject(s)
Nicotiana , Phytophthora , Molybdenum/pharmacology , Soil , Plant Diseases/microbiology
17.
Zhen Ci Yan Jiu ; 49(3): 221-230, 2024 Mar 25.
Article in English, Chinese | MEDLINE | ID: mdl-38500318

ABSTRACT

OBJECTIVES: To observe the effects of electroacupuncture (EA) at "Fengfu"(GV16), "Taichong"(LR3), and "Zusanli"(ST36) on mitophagy mediated by silencing regulatory protein 3 (SIRT3)/ PTEN induced putative kinase 1 (PINK1)/PARK2 gene coding protein (Parkin) in the midbrain substantia nigra of Parkinson's disease (PD) mice, and to explore the potential mechanisms of EA in treating PD. METHODS: C57BL/6 mice were randomly divided into the control, model, EA, and sham EA groups, with 12 mice in each group. The PD mouse model was established by intraperitoneal injection of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP). The EA group received EA stimulation at GV16, LR3 and ST36, while the sham EA group received shallow needling 1 mm away from the above acupoints without electrical stimulation. The motor ability of mice in each group was evaluated using an open field experiment. Immunohistochemistry was used to detect the expression of tyrosine hydroxylase (TH) and α-synuclein (α-syn) in the substantia nigra of mice. The ultrastructure of neurons in substantia nigra was observed by transmission electron microscope (TEM). Immunofluorescence was used to detect the expression of the autophagy marker autophagy-associated protein light chain 3 (LC3). The expression levels of TH, α-syn, SIRT3, PINK1, Parkin, P62, Beclin-1, LC3Ⅱ mRNA and protein were detected by PCR and Western blot. RESULTS: Compared with the control group, mice in the model group showed a decrease in the total exercise distance, time, movement speed and times of crossing central region (P<0.01);the positive expressions of TH and LC3 were decreased (P<0.01), while the positive expression of α-syn increased (P<0.01), accompanied by mitochondrial swelling, mitochondrial cristae fragmentation and decrease, and decreased lysosome count;the expression levels of TH, SIRT3, PINK1, Parkin, Beclin-1, and LC3Ⅱ mRNA and protein in the midbrain substantia nigra were decreased (P<0.01), while the expression levels of α-syn and P62 mRNA and protein were increased (P<0.01, P<0.05). Compared with the model group, the mice in EA group showed a significant increase in the total exercise distance, time, movement speed and times of crossing central region (P<0.01, P<0.05);the positive expressions of TH and LC3 were increased (P<0.01, P<0.05), while the positive expression of α-syn was decreased (P<0.01), accompanied by an increase in mitochondrial count, appearance of autophagic va-cuoles, and a decrease in swelling, the expression levels of TH, SIRT3, PINK1, Parkin, Beclin-1 and LC3Ⅱ mRNA and protein in the midbrain substantia nigra were increased (P<0.01, P<0.05), while the mRNA and protein expression levels of α-syn and P62 were decreased (P<0.01);the sham EA group showed an increase in the total exercise distance and time(P<0.05), with an increase in the positive expression of TH (P<0.05) and a decrease in the positive expression of α-syn (P<0.05);some mitochondria exhibited swelling, and no autophagic vacuoles were observed;the protein expression levels of TH, SIRT3, Parkin and LC3Ⅱ were increased (P<0.01, P<0.05), and the expression levels of P62 mRNA, α-syn mRNA and protein were decreased (P<0.01, P<0.05), and LC3Ⅱ mRNA expression was increased (P<0.05). In comparison to the sham EA group, the EA group showed an extension in the total exercise time (P<0.01), the positive expression and mRNA expression levels of α-syn were decreased (P<0.01, P<0.05), while the expression levels of TH, SIRT3, PINK1, Parkin mRNA and SIRT3 protein were increased (P<0.05). CONCLUSIONS: EA at GV16, LR3, and ST36 can exert neuroprotective function and improve the motor ability of PD mice by activating the SIRT3/PINK1/Parkin pathway to enhance the expression of TH and reduce α-syn aggregation in the substantia nigra of PD mice.


Subject(s)
Electroacupuncture , Parkinson Disease , Sirtuin 3 , Mice , Animals , Parkinson Disease/genetics , Parkinson Disease/therapy , Sirtuin 3/genetics , Mitophagy/genetics , Protein Kinases/genetics , Beclin-1 , Mice, Inbred C57BL , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , RNA, Messenger
18.
J Biomed Sci ; 31(1): 17, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38281981

ABSTRACT

MDM2 has been established as a biomarker indicating poor prognosis for individuals undergoing immune checkpoint inhibitor (ICI) treatment for different malignancies by various pancancer studies. Specifically, patients who have MDM2 amplification are vulnerable to the development of hyperprogressive disease (HPD) following anticancer immunotherapy, resulting in marked deleterious effects on survival rates. The mechanism of MDM2 involves its role as an oncogene during the development of malignancy, and MDM2 can promote both metastasis and tumor cell proliferation, which indirectly leads to disease progression. Moreover, MDM2 is vitally involved in modifying the tumor immune microenvironment (TIME) as well as in influencing immune cells, eventually facilitating immune evasion and tolerance. Encouragingly, various MDM2 inhibitors have exhibited efficacy in relieving the TIME suppression caused by MDM2. These results demonstrate the prospects for breakthroughs in combination therapy using MDM2 inhibitors and anticancer immunotherapy.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Antineoplastic Agents/pharmacology , Disease Progression , Immunotherapy/methods , Neoplasms/therapy , Neoplasms/drug therapy , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Proto-Oncogene Proteins c-mdm2/genetics , Tumor Microenvironment
19.
Sci Total Environ ; 918: 170379, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38280593

ABSTRACT

Alkyl-PAHs (APAHs) have been identified worldwide, which could rapidly react with chlorine and OH radicals in the atmosphere. In this study, a comprehensive investigation is conducted for SOA generated by a representative alkyl-naphthalene (1-methyl naphthalene, 1-MN) initiated by Cl, including yield, chemical composition, and volatility of SOA. To better understand 1-MN atmospheric oxidation, reaction mechanisms of 1MN with Cl atoms and OH radicals are proposed and compared under different nitrogen oxides (NOx) conditions. The SOA yields are comparable for Cl-initiated and OH-initiated reactions under high NOx conditions but increased in Cl-initiated reactions under low NOx conditions. The compounds with ten carbons are more abundant in Cl-initiated SOA, while compounds with nine carbons have higher intensity, suggesting that Cl caused ring-retained and alkyl-lost products and OH produces ring-broken and alkyl-retained compounds. The volatility of SOA is remarkably low, and SOA formed from Cl oxidation is slightly higher than that from OH oxidation. These results reveal that 1MN-derived SOA with OH and Cl radicals would have different physical-chemical properties and may play an important role in air quality and health effects.

20.
Sci Total Environ ; 912: 168333, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-37952675

ABSTRACT

During the COVID-19 lockdown in the Beijing-Tianjin-Hebei (BTH) region in China, large decrease in nitrogen oxides (NOx) emissions, especially in the transportation sector, could not avoid the occurrence of heavy PM2.5 pollution where nitrate dominated the PM2.5 mass increase. To experimentally reveal the effect of NOx control on the formation of PM2.5 secondary components (nitrate in particular), photochemical simulation experiments of mixed volatile organic compounds (VOCs) under various NOx concentrations with smog chamber were performed. The proportions of gaseous precursors in the control experiment were comparable to ambient conditions typically observed in the BTH region. Under relatively constant VOCs concentrations, when the initial NOx concentration was reduced to 40% of that in the control experiment (labelled as NOx,0), the particle mass concentration was not significantly reduced, but when the initial NOx concentration decreased to 20 % of NOx,0, the mass concentration of particles as well as nitrate and organics showed a sudden decrease. A "critical point" where the mass concentration of secondary aerosol started to decline as the initial NOx concentration decreased, located at 0.2-0.4 NOx,0 (or 0.18-0.44 NO2,0) in smog chamber experiments. The oxidation capacity and solar radiation intensity played key roles in the mass concentration and compositions of the formed particles. In field observations in the BTH region in the autumn and winter seasons, the "critical point" exist at 0.15-0.34 NO2,0, which coincided mostly with the laboratory simulation results. Our results suggest that a reduction of NOx emission by >60% could lead to significant reductions of secondary aerosol formation, which can be an effective way to further alleviate PM2.5 pollution in the BTH region.

SELECTION OF CITATIONS
SEARCH DETAIL