Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
3.
Environ Toxicol ; 39(3): 1617-1630, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38009649

ABSTRACT

BACKGROUND: Circular RNAs (circRNAs) have been reported to play important roles in cancers. Here, we characterized circVMP1 (hsa_circ_0006508), an important circRNA which promoted glycolysis and disease progression in colorectal cancer (CRC). In this study, we aimed to explore the mechanism by which circVMP1 regulated tumor glycolysis and its related pathways in promoting CRC cell proliferation and metastasis. METHODS: The expression level of circVMP1 in CRC tissues and adjacent normal tissues was detected using quantitative PCR. In vitro and in vivo functional experiments were used to evaluate the effects of circVMP1 in the regulation of CRC cell proliferation and migration. Mitochondrial stress tests and glycolysis stress tests were conducted to detect the effect of circVMP1 on oxidative phosphorylation and glycolysis. Dual-luciferase reporter and RNA immunoprecipitation assays were used to evaluate the interaction between circVMP1, miR-3167, and HKDC1. RESULTS: We demonstrated that the level of circVMP1 was significantly upregulated in CRC tissues compared with normal tissues. In HCT116 and SW480 cells, overexpression of circVMP1 promoted proliferation, metastasis, and glycolysis. In vivo analysis indicated that circVMP1 accelerated the proliferation of xenograft tumors. As for the mechanism, overexpression of circVMP1 increased the levels of hexokinase domain component 1 (HKDC1) through competitive binding with miR-3167. CONCLUSION: Our study reported that circVMP1 was one of the tumor driver genes that promoted CRC malignant progression and glycolysis by upregulating HKDC1. CircVMP1/miR-3167/HKDC1 was a signaling axis that might be a target for CRC therapy.


Subject(s)
Colorectal Neoplasms , Hexokinase , RNA, Circular , Humans , Cell Line, Tumor , Cell Proliferation , Disease Progression , Glycolysis , Hexokinase/metabolism , MicroRNAs
4.
Environ Sci Pollut Res Int ; 30(17): 49290-49300, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36773263

ABSTRACT

To reduce the harmful effects of nicosulfuron on sweet corn, the physiological regulation mechanism of sweet corn detoxification was studied. This study analyzed the effects of nicosulfuron stress on the glyoxalase system, hormone content, and key gene expression of nicosulfuron-tolerant "HK301" and nicosulfuron-sensitive "HK320" sweet corn seedling sister lines. After spraying nicosulfuron, the methylglyoxal (MG) content in HK301 increased first and then decreased. Glyoxalase I (GlyI) and glyoxalase II (GlyII) activities, non-enzymatic glutathione (GSH), and the glutathione redox state glutathione/(glutathione + glutathione disulfide) (GSH/(GSH + GSSG)) showed a similar trend as the MG content. Abscisic acid (ABA), gibberellin (GA), and zeatin nucleoside (ZR) also increased first and then decreased, whereas the auxin (IAA) increased continuously. In HK301, all indices after spraying nicosulfuron were significantly greater than those of the control. In HK320, MG accumulation continued to increase after nicosulfuron spraying and GlyI and GlyII activities, and GSH first increased and then decreased after 1 day of stress. The indicators above were significantly greater than the control. The GSH/(GSH + GSSG) ratio showed a decreasing trend and was significantly smaller than the control. Furthermore, ABA and IAA continued to increase, and the GA and ZR first increased and then decreased. Compared with HK320, HK301 significantly upregulated the transcription levels of GlyI and GlyII genes in roots, stems, and leaves. Comprehensive analysis showed that sweet maize seedlings improved their herbicide resistance by changing the glyoxalase system and regulating endogenous hormones. The results provide a theoretical basis for further understanding the response mechanism of the glyoxalase system and the regulation characteristics of endogenous hormones in maize under nicosulfuron stress.


Subject(s)
Seedlings , Zea mays , Glutathione Disulfide/metabolism , Glutathione/metabolism , Hormones/metabolism
5.
Oxid Med Cell Longev ; 2022: 4326695, 2022.
Article in English | MEDLINE | ID: mdl-35873795

ABSTRACT

Xanthine oxidase (XO) utilizes molecular oxygen as a substrate to convert purine substrates into uric acid, superoxide, and hydrogen peroxide, which is one of the main enzyme pathways to produce reactive oxygen species (ROS) during septic inflammation and oxidative stress. However, it is not clear whether XO inhibition can improve sepsis-induced renal hypoxia in sepsis-induced acute kidney injury (SI-AKI) mice. In this study, pretreatment with febuxostat, an XO-specific inhibitor, or kidney knockdown of XO by shRNA in vivo significantly improved the prognosis of SI-AKI, not only by reducing the levels of blood urea nitrogen, serum creatinine, tumor necrosis factor-α, interleukin-6, and interleukin-1ß in peripheral blood but also by improving histological damage and apoptosis, reducing the production of ROS, and infiltrating neutrophils and macrophages in the kidney. More importantly, we found that pharmacological and genetic inhibition of XO significantly improved renal hypoxia in SI-AKI mice by a hypoxia probe via fluorescence staining. This effect was further confirmed by the decrease in hypoxia-inducible factor-1α expression in the kidneys of mice with pharmacological and genetic inhibition of XO. In vitro, the change in XO activity induced by lipopolysaccharide was related to the change in hypoxia in HK-2 cells. Febuxostat and XO siRNA significantly relieved the hypoxia of HK-2 cells cultured in 2% oxygen and reversed the decrease in cell viability induced by lipopolysaccharide. Our results provide novel insights into the nephroprotection of XO inhibition in SI-AKI, improving cell hypoxia by inhibiting XO activity and reducing apoptosis, inflammation, and oxidative stress.


Subject(s)
Acute Kidney Injury , Sepsis , Acute Kidney Injury/etiology , Animals , Febuxostat/pharmacology , Febuxostat/therapeutic use , Hypoxia/complications , Inflammation/drug therapy , Ischemia , Kidney , Lipopolysaccharides/pharmacology , Mice , Oxygen/pharmacology , RNA, Small Interfering/metabolism , Reactive Oxygen Species/metabolism , Sepsis/complications , Xanthine Oxidase/metabolism
6.
Front Cardiovasc Med ; 9: 847163, 2022.
Article in English | MEDLINE | ID: mdl-35571218

ABSTRACT

Objective: Delayed enhancement cardiac CT is a reliable tool for the diagnosis of left atrial appendage thrombus but limited for scanning heterogeneity. We aimed to explore the improvement of the 1 and 3-min delay phase at the diagnostic level to detect left atrial appendage thrombus, in order to set up a reasonable CT scanning scheme. Materials and Methods: A total of 6,524 patients were continuously retrieved from January 2015 to September 2020 retrospectively. The patients had undergone Transesophageal echocardiography (TEE) and cardiac CT with complete period include the arterial enhancement phase, 1 and 3-min delay phase, TEE were used as the reference standard. The final study included 329 patients. Three experienced radiologists independently assessed each phase of the cardiac CT images for thrombus diagnosis. We explored the improvement of the diagnostic ability of different delayed contrast-enhanced phases for left atrial appendage thrombus detection. Multiple logistic regression analysis were used for further high-risk stratification to avoid an additional 1-min delayed scan. Results: In total, 29 thrombosis were detected at TEE. For all cardiac CT phases, sensitivity and negative predictive were 100%. The specificity were 0.54, 0.93, and 1.00, respectively; The positive predictive values (PPV) were 0.17, 0.57, and 1.00, respectively; Area under curve (AUC) were 0.75, 0.95, and 0.98, respectively. High risk factors that cannot be clearly diagnosed with 1-min delay phase included reduced cardiac function, increased CHA2DS2-VAScscore and left atrial enlargement. Compared with the arterial enhanced phase, increased radiation doses in the 1 and 3-min delay phases were 1.7 ± 1.3 msv and 1.5 ± 0.8 msv (mean ± standard deviation). Conclusion: Using TEE as the reference standard, early contrast-enhanced CT scanning with 1 and 3-min delay is necessary for the diagnosis of left appendage thrombus, which could significantly improve the diagnostic efficiency. Patients with high-risk stratification are suitable for direct 3-min delayed scanning.

7.
Quant Imaging Med Surg ; 12(5): 2744-2754, 2022 May.
Article in English | MEDLINE | ID: mdl-35502395

ABSTRACT

Background: The napkin-ring sign (NRS) was accepted as unstable plaques at coronary computed tomography angiography (CCTA). However, the incidence is relatively low. We sought to assess whether the newly defined diamond-attenuation-sign [DAS, defined as a qualitative plaque feature in a mixed plaque (MP) on CCTA cross-section images by the presence of two features: a visual calcification (in the shape of a diamond) accompanied by an annular-shape lower attenuation plaque tissue surrounding the lumen like a ring], could be accurately identified as unstable atherosclerotic plaques. Methods: Eight heart transplant recipients (8 male; mean age, 48.5±11.6 years; range, 37-65 years) underwent CCTA exams prior to heart transplant surgery. Segment-based CCTA sections were independently evaluated for various plaque patterns including non-calcified plaque (NCP) with NRS (NCP-NRS), NCP without NRS (NCP-non-NRS), MP with DAS (MP-DAS), MP without DAS sign (MP-non-DAS), and calcified plaque (CP). Results: NCP-NRS plaques in 6.4% (23/358), NCP-non-NRS plaques in 24.0% (86/358), MP-DAS plaques in 18.2% (65/358), MP-non-DAS plaques in 20.1% (72/358), and calcified-plaques in 7.0% (25/358) of all cases. The specificity and positive predictive values of the MP-DAS and NCP-NRS signs to identify unstable plaque features were excellent (97.1% vs. 98.6%, 90.8% vs. 87.0%, respectively). DAS plaques were more frequently seen on CCTA exams than that of NRS (39.3% vs. 13.3%, respectively, P=0.001). The diagnostic performance of MP-DAS to identify unstable coronary lesions was superior compared to NCP-NRS [area under the receiver operating characteristic curve (ROC), 0.756; 95% CI: 0.717-0.791 vs. 0.558; 95% CI: 0.514-0.600, respectively, P<0.001]. Conclusions: Both the DAS and NRS had a high specificity and positive predictive value for the presence of unstable lesions. DAS was a better identification of unstable atherosclerotic plaques in the assessment of plaque-calcification-pattern (PCP).

8.
Eur Radiol ; 32(6): 4003-4013, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35171348

ABSTRACT

OBJECTIVES: To explore whether radiomics-based machine learning (ML) models could outperform conventional diagnostic methods at identifying vulnerable lesions on coronary computed tomographic angiography (CCTA). METHODS: In this retrospective study, 36 heart transplant recipients with coronary heart disease (CAD) and end-stage heart failure were included. Pathological cross-section samples of 350 plaques were collected and coregistered to patients' preoperative CCTA images. A total of 1184 radiomic features were extracted from CCTA images. Through feature selection and stratified fivefold cross-validation, we derived eight radiomics-based ML models for lesion vulnerability prediction. An independent set of 196 plaques from another 8 CAD patients who underwent heart transplants was collected to validate radiomics-based ML models' diagnostic accuracy against conventional CCTA feature-based diagnosis (presence of at least 2 high-risk plaque features). The performance of the prediction models was assessed by the area under the receiver operating characteristic curve (AUC) with 95% confidence intervals (CI). RESULTS: The training group used to develop radiomics-based ML models contained 200/350 (57.1%) vulnerable plaques and the external validation group was composed of 67.3% (132/196) vulnerable plaques. The radiomics-based ML model based on eight radiomic features showed excellent cross-validation diagnostic accuracy (AUC: 0.900 ± 0.033). In the validation group, diagnosis based on conventional CCTA features demonstrated moderate performance (AUC: 0.656 [95% CI: 0.593 -0.718]), while the radiomics-based ML model showed higher diagnostic ability (0.782 [95% CI: 0.710 -0.846]). CONCLUSIONS: Radiomics-based ML models showed better diagnostic ability than the conventional CCTA features at assessing coronary plaque vulnerability. KEY POINTS: • CCTA has great potential in the diagnosis of vulnerable coronary artery lesions. • Radiomics model built through CCTA could discriminate coronary vulnerable lesions in good diagnostic ability. • Radiomics model could improve the ability of vulnerability diagnosis against traditional CCTA method, sensitivity especially.


Subject(s)
Atherosclerosis , Coronary Artery Disease , Plaque, Atherosclerotic , Computed Tomography Angiography/methods , Coronary Angiography/methods , Coronary Artery Disease/diagnostic imaging , Humans , Plaque, Atherosclerotic/diagnostic imaging , Retrospective Studies
10.
Int J Gen Med ; 14: 1033-1039, 2021.
Article in English | MEDLINE | ID: mdl-33790632

ABSTRACT

OBJECTIVE: This study aimed to investigate the effects of the Sn100 kVp tube voltage mode on the image quality and radiation dose of computed tomography pulmonary angiography (CTPA). METHODS: A total of 145 patients who underwent CTPA were randomly divided into five groups: control group (120 kVp, 150 mAs), test group A (Sn100 kVp, 270 mAs), test group B (120 kVp, 30 mAs), test group C (70 kVp, 150 mAs), and test group D (80 kVp, 70 mAs). After image post-processing, the image quality and radiation dose of each group were analyzed. RESULTS: The computed tomography values of images in the four test groups were more than 250 HU, which met the criteria for diagnosis. The signal-to-noise ratio and contrast-to-noise ratio of the images in the four test groups were lower than those in the control group. The radiation dose in each test group was lower than in the control group. The radiation dose was lowest in test group A. CONCLUSION: The Sn100 kVp energy spectrum purification protocol can meet the requirements for clinical diagnosis, ensure image quality, and reduce the dose of radiation that patients receive.

11.
Front Aging Neurosci ; 13: 745774, 2021.
Article in English | MEDLINE | ID: mdl-35002672

ABSTRACT

Aging is becoming a severe social phenomenon globally, and the improvements in health care and increased health awareness among the elderly have led to a dramatic increase in the number of surgical procedures. Because of the degenerative changes in the brain structure and function in the elderly, the incidence of perioperative neurocognitive disorders (PND) is much higher in elderly patients than in young people following anesthesia/surgery. PND is attracting more and more attention, though the exact mechanisms remain unknown. A growing body of evidence has shown that the gut microbiota is likely involved. Recent studies have indicated that the gut microbiota may affect postoperative cognitive function via the gut-brain axis. Nonetheless, understanding of the mechanistic associations between the gut microbiota and the brain during PND progression remains very limited. In this review, we begin by providing an overview of the latest progress concerning the gut-brain axis and PND, and then we summarize the influence of perioperative factors on the gut microbiota. Next, we review the literature on the relationship between gut microbiota and PND and discuss how gut microbiota affects cognitive function during the perioperative period. Finally, we explore effective early interventions for PND to provide new ideas for related clinical research.

12.
J Int Med Res ; 48(6): 300060520924205, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32567443

ABSTRACT

OBJECTIVE: This study aimed to evaluate the joint monitoring of somatosensory evoked potentials (SEPs) and motor evoked potentials (MEPs) in vertebral canal decompression surgery for acute spinal cord injury. METHODS: Twenty-four patients, who were admitted to the hospital for the surgical treatment of spinal cord injury with SEP and MEP monitoring, were assigned to the intraoperative monitoring group (group I). In addition, 24 patients who were admitted to the hospital for the surgical treatment of spinal cord injury without SEP or MEP monitoring were assigned to the control group (group C). RESULTS: In group I, there were significant changes before and after decompression surgery in the P40 latency and amplitude, and in the latency of MEP in the abductor hallucis brevis (AHB), in patients with improved spinal nerve function following surgery. In contrast, there were no significant differences in the P40 latency or amplitude, or the latency of MEP in the AHB, in patients who showed no improvement after surgery. CONCLUSION: In vertebral canal decompression surgery for acute spinal cord injury, the application of joint MEP and SEP monitoring can timely reflect changes in spinal cord function.


Subject(s)
Decompression, Surgical/methods , Monitoring, Intraoperative/methods , Spinal Canal/surgery , Adult , China , Decompression/methods , Evoked Potentials, Motor/physiology , Evoked Potentials, Somatosensory/physiology , Female , Humans , Male , Middle Aged , Spinal Canal/physiopathology , Spinal Cord , Spinal Cord Injuries/surgery
13.
Onco Targets Ther ; 13: 4035-4048, 2020.
Article in English | MEDLINE | ID: mdl-32494158

ABSTRACT

BACKGROUND: Emerging evidence suggests that circular RNAs (circRNAs) are vital regulators in a range of cancers. "miRNA sponge" is the most reported role played by circRNAs in many tumors. The insulin-like growth factor (IGF) 1 pathway plays a key role in the development and progression of many cancers, including colorectal cancer (CRC). The aim of the study is to establish the potential clinical value and driving molecular mechanisms of circRNAs in CRC. MATERIALS AND METHODS: Real-time quantitative RT-PCR (qRT-PCR) was performed to measure the circRUNX1 expression in 52 tissue samples from CRC patients. We verified the tumor promotor role of circRUNX1 in cell-based in vitro and in vivo assays. Human growth factor array was used to identify circRUNX1-regulated signaling pathways. We then used a double luciferase reporter assay and RNA fluorescence in situ hybridization to identify the downstream miR-145-5p of circRUNX1. Furthermore, we performed Western blotting and biological function assays to demonstrate if the circRUNX1/miR-145-5p/IGF1 axis is responsible for the proliferation of CRC cells and promotes CRC development. RESULTS: By performing qRT-PCR from CRC tissues and paired adjacent normal mucosa tissues, we identified that circRUNX1 expression was significantly upregulated in CRC tissues and positively related with lymph node metastasis, distant metastasis and advanced tumor-node-metastasis tumor stage in patients. Functionally, circRUNX1 knockdown inhibited cell proliferation and migration and promoted apoptosis, whereas its overexpression exerted opposite effects. In vivo, circRUNX1 promoted tumor growth and metastasis. Mechanically, circRUNX1 shared miRNA response elements with IGF1. circRUNX1 competitively bound to miR-145-5p and prevented miR-145-5p from decreasing the expression of IGF1, which facilitated tumor growth. CONCLUSION: Our studies verified that circRUNX1 functions as a tumor promotor in CRC cells by targeting the miR-145-5p/IGF1 signaling pathway and may have potential use as a prognostic indicator and therapeutic target in CRC patients.

15.
Oncol Rep ; 43(4): 1113-1124, 2020 04.
Article in English | MEDLINE | ID: mdl-32323780

ABSTRACT

Inflammasomes can identify endogenous danger signals as an inflammatory immune response. As the most common inflammasome, the NLR pyrin family domain containing 3 (NLRP3) inflammasome is associated with the pathogenesis of different tumors. However, the function of the NLRP3 inflammasome in esophageal cancer (EC) has rarely been reported. Herein, the expression levels of the components of NLRP3 inflammasome and Ki­67 were analyzed by immunohistochemistry. Furthermore, correlations between the NLRP3 inflammasome and Ki­67 along with the clinicopathological features of EC patients were evaluated. The components of the NLRP3 inflammasome were also assessed by western blot analysis and quantitative PCR. NLRP3 was silenced or overexpressed in different esophageal squamous cell carcinoma (ESCC) cell lines, and cell viability, migration and invasion were assessed by CCK­8 and Transwell assays. The present results showed that high NLRP3 expression in the tumor specimens was significantly associated with TNM stage and T category. Spearman's correlation analysis revealed a positive correlation between NLRP3 and the Ki­67 proliferation index. The mRNA and protein levels of NLRP3, apoptosis­associated speck­like protein containing a CARD (ASC), cleaved caspase­1, and interleukin (IL)­1ß in tumor tissues were higher than those in non­cancerous tissues. The level of secreted IL­1ß in tumor tissues was also increased, as compared to that in normal tissues. Silencing of NLRP3 in KYSE­70 and TE13 cells strongly attenuated cell viability, decreased cell mobility in wound­healing assays and greatly diminished the ability of cell migration and invasion in the Transwell system. Overexpression of NLRP3 in KYSE­510 and EC9706 cells markedly promoted the proliferation, migration and invasion. Collectively, these results revealed that the the NLRP3 inflammasome is upregulated in human ESCC tissues and promotes ESCC progression. Hence, NLRP3 could be a promising new candidate diagnostic and prognostic target.


Subject(s)
Cell Movement , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/pathology , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Apoptosis , Caspase 1/metabolism , Cell Line, Tumor , Cell Proliferation , Esophageal Neoplasms/metabolism , Esophageal Squamous Cell Carcinoma/metabolism , Female , Humans , Interleukin-1beta/metabolism , Male , Middle Aged , Signal Transduction , Up-Regulation
16.
Onco Targets Ther ; 13: 423-434, 2020.
Article in English | MEDLINE | ID: mdl-32021287

ABSTRACT

BACKGROUND: Emerging studies have revealed that circular RNAs (circRNAs) correlate with diverse diseases including cancers. However, little is known about the functions of circRNAs in colorectal cancer (CRC). In our previous research, downregulation of hsa_circ_0140388 (circHUEW1) has been detected in CRC tissues through high-throughput sequencing. However, the underlying mechanism by which circHUWE1 regulates the proliferation and apoptosis in CRC has not been investigated. MATERIALS AND METHODS: The levels of circHUWE1 in 58 pairs of CRC tissues and corresponding adjacent healthy tissues were detected by RT-qPCR. In addition, the effects of circHUWE1 on cell proliferation, apoptosis migration and invasion were evaluated by cell proliferation assays, flow cytometry, and transwell assays in HCT116 and SW480 cell lines respectively. Meanwhile, the dual-luciferase reporter system assay was used to explore the interaction between circHUWE1 and miR-486 (hsa-miR-486-5p). RESULTS: In this study, we demonstrate that the expression of circHUEW1 is upregulated in CRC tissues. High expression of circHUEW1 was significantly associated with lymphovascular invasion (P =0.036), lymph node metastasis (P =0.017), distant metastasis (P =0.024), and TNM stage (P =0.009). Moreover, the area under the curve (AUC) of the receiver operating characteristic (ROC) curve was 0.732, which indicated that circHUWE1 could serve as a potential biomarker in the detection of CRC. Silencing circHUWE1 significantly inhibited the proliferation, migration and invasion capacity of CRC cells in vitro. Mechanistically, we demonstrated that circHUWE1 could sponge miR-486 and the downregulation of miR-486 could reverse the cancer suppressive effects caused by silencing circHUWE1. CONCLUSION: In this study, our results revealed that circHUWE1 may be a potential therapeutic target and diagnostic biomarker for CRC.

17.
Korean J Radiol ; 21(2): 210-217, 2020 02.
Article in English | MEDLINE | ID: mdl-31997596

ABSTRACT

OBJECTIVE: We sought to distinguish lipid plaques using a CT quantitative pixel density histogram, based on the pathological diagnosis of lipid cores as the gold standard. MATERIALS AND METHODS: Eight patients awaiting heart transplantation due to end-stage coronary heart disease underwent coronary CT angiography (CCTA) spectroscopy prior to heart transplantation; coronary artery pathological analysis was performed for all patients. Lipid-core plaques were defined pathologically as manifesting a lipid core diameter > 200 µm, a circumference > 60 degrees, and a cap thickness < 450 µm. The percentage distributions of CT pixel attenuation ≤ 20, 30, 40, and 50 HU were calculated using quantitative histogram analysis. RESULTS: A total of 271 transverse sections were co-registered between CCTA and pathological analysis. Overall, 26 lipid cores and 16 fibrous plaques were identified by pathological analysis. There was no significant difference in median CT attenuation between the lipid and fibrous plaques (51 HU [interquartile range, 46-63] vs. 57 HU [interquartile range, 50-64], p = 0.659). The median percentage of CT pixel attenuation ≤ 30 HU accounted for 11% (5-17) of lipid-core plaques and 0% (0-2) of fibrous plaques (p < 0.001). The sensitivity and specificity of the method for diagnosing lipid plaques by the average CT pixel attenuation ≤ 30 HU were 80.8% and 87.5%, respectively. The area under the receiver operator characteristics curve was 0.898 (95% confidence interval: 0.765-0.970; 3.0% was the best cut-off value). The diagnostic performance was significantly higher than those of the average pixel CT attenuation percentages ≤ 20, 40, and 50 HU and the mean CT attenuation (p < 0.05). CONCLUSION: In in vivo conditions, with the pathological lipid core as the gold standard, quantification of the percentage of average CT pixel attenuation ≤ 30 HU in the histogram can be useful for accurate identification of lipid plaques.


Subject(s)
Computed Tomography Angiography/methods , Coronary Disease/diagnosis , Coronary Vessels/pathology , Lipids/analysis , Adult , Aged , Area Under Curve , Coronary Disease/diagnostic imaging , Coronary Vessels/diagnostic imaging , Female , Fibrosis , Humans , Image Processing, Computer-Assisted , Male , Middle Aged , Prospective Studies , ROC Curve , Sensitivity and Specificity
18.
EBioMedicine ; 46: 66-78, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31383552

ABSTRACT

BACKGROUND: MicroRNAs (miRNAs) are involved in oncogenesis of esophageal squamous cell carcinoma (ESCC). miR-134 is reported to have a tumour-suppressive role but its role in ESCC is not known. The present study was designed to examine whether miR-134 inhibits ESCC development and further explored relevant underlying mechanisms. METHODS: Differentially expressed genes related to ESCC were identified from microarray gene expression profiles. Immunohistochemical staining and RT-qRCR assays identified elevated PLXNA1 expression levels and low miR-134. The relationship between miR-134 and PLXNA1 was predicted and further verified by a dual-luciferase reporter assay. The expression levels of miR-134 and PLXNA1 in ESCC cells were modified by miR-134 mimic/inhibitor and siRNA against PLXNA1, respectively. Thereafter, the expression of MAPK signalling pathway-related proteins, as well as the viability, migration, invasion, cell cycle and cell apoptosis of ESCC cells was investigated. FINDINGS: The results showed that miR-134 could block the MAPK signalling pathway by downregulating PLXNA1. When miR-134 was overexpressed or PLXNA1 was silenced, cell apoptosis was enhanced, the cell cycle was retarded, and the cell proliferation, migration and invasion were suppressed. In vivo experiments confirmed that miR-134 overexpression or PLXNA1 silencing restrained tumour growth and lymph node metastasis. INTERPRETATION: These findings demonstrate that cancer cell proliferation, migration, invasion, and tumour metastasis of ESCC can be suppressed by overexpression of miR-134 through downregulating PLXNA1, which subsequently blocks the MAPK signalling pathway. These results provide new potential targets and strategies for the treatment of ESCC.


Subject(s)
Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/metabolism , Gene Expression Regulation, Neoplastic , MAP Kinase Signaling System , MicroRNAs/genetics , Nerve Tissue Proteins/metabolism , Receptors, Cell Surface/metabolism , Aged , Animals , Apoptosis/genetics , Cell Line, Tumor , Cell Movement , Cell Proliferation , Computational Biology/methods , Disease Progression , Esophageal Squamous Cell Carcinoma/pathology , Female , Gene Expression Profiling , Humans , Immunohistochemistry , Male , Mice , Middle Aged , Models, Biological , Neoplasm Metastasis , Neoplasm Staging , RNA Interference
19.
Biomed Pharmacother ; 112: 108611, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30797148

ABSTRACT

Circular RNAs (circRNAs) are a novel class of non-coding RNAs with distinct properties and diverse physiological and pathological functions. However, the functions of circRNAs in colorectal cancer (CRC) remain elusive. This study aimed to investigate the functional roles of circVAPA in CRC. High-throughput RNA sequencing was performed in 4 paired CRC tissues, and circVAPA (hsa_circ_0006990), was identified as a potential functional circRNA. Using quantitative real-time polymerase chain reaction (qRT-PCR), circVAPA was found to be up-regulated in CRC patients' tissues and plasma. Furthermore, circVAPA level was associated with unfavorable clinicopathologic features in CRC. The area under curve (AUC) of ROC was 0.724, suggesting that plasma level of circVAPA could serve as a promising biomarker for CRC detection. Sanger sequencing confirmed the back-splice junction sequences of circVAPA. Actinomycin D and RNase R treatments suggested that circVAPA was highly stable compared with its linear counterpart, and qRT-PCR for the circVAPA level in nuclear and cytoplasmic fractions indicated that circVAPA was predominantly localized in the cytoplasm. Gain-of-function and loss-of-function studies in CRC cell lines indicated that circVAPA could promote CRC cell proliferation, migration, invasion, and inhibit apoptosis. miRanda software (v3.3a) was used to predict target miRNAs of circVAPA. Moreover, target miRNAs associated with the KEGG pathway of COLORECTAL CANCER (Entry: map05210; https://www.kegg.jp/) were screened using DIANA-miRPath v.3 platform (Reverse Search module; TarBase v7.0 method). The analyses by miRanda and miRPath suggested that circVAPA could potentially bind to hsa-miR-101-3p (miR-101) associated with the COLORECTAL CANCER pathway. Luciferase reporter assay confirmed a direct interaction between circVAPA and miR-101. Furthermore, circVAPA had no effect on the expression level of miR-101, and miR-101 over-expression had the similar tumor-suppressing effects as circVAPA silencing. The tumor-promoting effect of circVAPA over-expression could be reversed by the up-regulation of miR-101. These data demonstrated that circVAPA promoted CRC progression by sponging miR-101. In conclusion, we have verified that circVAPA is up-regulated in CRC patients' tissues and plasma, and exerts oncogenic properties by sponging miR-101 in CRC. CircVAPA could serve as a promising biomarker and a therapeutic target for CRC.


Subject(s)
Biomarkers, Tumor/biosynthesis , Colorectal Neoplasms/metabolism , MicroRNAs/biosynthesis , RNA/biosynthesis , Up-Regulation/physiology , Vesicular Transport Proteins/biosynthesis , Aged , Biomarkers, Tumor/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Female , HCT116 Cells , HEK293 Cells , HT29 Cells , Humans , Male , MicroRNAs/genetics , Middle Aged , RNA/genetics , RNA, Circular , Vesicular Transport Proteins/genetics
20.
Front Neurol ; 10: 1416, 2019.
Article in English | MEDLINE | ID: mdl-32082237

ABSTRACT

Objective: The present study aimed to evaluate the prognostic value of Acute Physiology and Chronic Health Evaluation (APACHE; II and III), Chinese Stroke Scale (CSS), National Institutes of Health Stroke Score (NIHSS), activities of daily living (ADL) (Barthel index, BI), and Glasgow Coma Scale (GCS) scores for stroke patients. Methods: A total of 352 stroke patients were evaluated using APACHE II, APACHE III, CSS, NIHSS, ADL, and GCS scores within 24 h after admission. And these patients were consecutive admissions to the hospital. The endpoint was in-hospital death. The scores of these scales were compared between the survival group and death group, and the receiver operating characteristic (ROC) curves were drawn. The ability of each scoring system to predict the prognosis of patients was evaluated using the area under the ROC curve, and the areas under the curves (AUCs) of these six scales were compared. Results: The AUCs of the APACHE II, APACHE III, CSS, NIHSS, ADL, and GCS scores were 0.882, 0.867, 0.832, 0.859, 0.838, and 0.819, respectively. Conclusion: APACHE II, APACHE III, CSS, NIHSS, ADL, and GCS scores have good predictive values in the prognosis of stroke patients. APACHE II is superior among the other five scales.

SELECTION OF CITATIONS
SEARCH DETAIL