Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 145
Filter
1.
Antonie Van Leeuwenhoek ; 118(1): 13, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39352515

ABSTRACT

An aerobic, Gram-stain negative bacterium was isolated from sediment samples of Barkol salt lake in Hami City, Xinjiang Uygur Autonomous Region, China, with the number EGI_FJ10229T. The strain is ellipse-shaped, oxidase-negative, catalase-positive, and has white, round, smooth, opaque colonies on marine 2216 E agar plate. Growth occurs at 4.0-37.0 â„ƒ (optimal:30.0 â„ƒ), pH 7.0-9.0 (optimal: pH 8.0) and NaCl concentration of 0-8.0% (optimal: 3.0%). Phylogenetic analysis based on 16S rRNA gene and genome sequences indicated that the isolated strain should be assigned to the genus Aquibaculum and was most closely related to Aquibaculum arenosum CAU 1616 T. Average nucleotide identity (ANI) and Average amino-acid identity (AAI) values between the type species of the genus Aquibaculum and other related type species were lower than the threshold values recommended for bacterial species. The genomic DNA G + C content of EGI_FJ10229T was 65.41%. The major polar lipids were diphosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylcholine, phosphatidylethanolamine and unidentified phospholipid. The major fatty acids (> 5%) were C19:0 cyclo ω8c (42.0%) and C18:1 ω7c (33.78%). The respiratory quinone identified was Q-10. Differential phenotypic and genotypic characteristics of this strain and species of genus Aquibaculum showed that the strain should be classified as representing a new species belonging to this genus, for which the name Aquibaculum sediminis sp. nov. is proposed. The type strain of the proposed novel species is EGI_FJ10229T (= KCTC 8570 T = GDMCC 1.4598 T).


Subject(s)
Base Composition , DNA, Bacterial , Geologic Sediments , Lakes , Phylogeny , RNA, Ribosomal, 16S , Geologic Sediments/microbiology , Lakes/microbiology , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , China , Bacterial Typing Techniques , Fatty Acids/analysis , Sodium Chloride/metabolism , Phospholipids/analysis , Sequence Analysis, DNA
2.
J Am Chem Soc ; 146(39): 26909-26915, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39300790

ABSTRACT

Water microdroplets possess unique interfacial properties that enable chemical reactions to occur spontaneously and increase the reaction rate by orders of magnitude. In this study, water containing styrene (SY) was cyclically sprayed into the air to form microdroplets with an average diameter of 6.7 µm. These microdroplets allowed SY to be oxidized into styrene oxide (SO) without catalysts. No oxidation products of SY were observed in the bulk solution under the same conditions, while in microdroplet reactions 4.2% conversion of SY with approximately 3.1 mM SO was detected. Compared with the traditional spraying microdroplet method, the oxidation product concentration was enhanced by 1000 times. Experiments proved that an aerobic environment boosts SY oxidation, leading to a proposed dual-path hydrogen peroxide (H2O2) oxidation mechanism at the droplet interface. This was confirmed by density functional theory calculations (DFT). Furthermore, in the presence of additional ultrasound, the SY oxidation process initiated by water droplets can be further enhanced, and 7.0% conversion of SY with approximately 5.2 mM SO was detected. The cyclic spraying method greatly enhanced the oxidation product concentration, showing the potential for large scale chemical production using microdroplets.

3.
Cell Death Dis ; 15(9): 687, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39300068

ABSTRACT

Group 3 innate lymphoid cells (ILC3s) are essential for both pathogen defense and tissue homeostasis in the intestine. Dysfunction of ILC3s could lead to increased susceptibility to intestinal inflammation. However, the precise mechanisms governing the maintenance of intestinal ILC3s are yet to be fully elucidated. Here, we demonstrated that ferroptosis is vital for regulating the survival of intestinal ILC3. Ferroptosis-related genes, including GPX4, a key regulator of ferroptosis, were found to be upregulated in intestinal mucosal ILC3s from ulcerative colitis patients. Deletion of GPX4 resulted in a decrease in NKp46+ILC3 cell numbers, impaired production of IL-22 and IL-17A, and exacerbated intestinal inflammation in a T cell-independent manner. Our mechanistic studies revealed that GPX4-mediated ferroptosis in NKp46+ILC3 cells was regulated by the LCN2-p38-ATF4-xCT signaling pathway. Mice lacking LCN2 in ILC3s or administration of a p38 pathway inhibitor exhibited similar phenotypes of ILC3 and colitis to those observed in GPX4 conditional knock-out mice. These observations provide novel insights into therapeutic strategies for intestinal inflammation by modulating ILC3 ferroptosis.


Subject(s)
Ferroptosis , Inflammation , Natural Cytotoxicity Triggering Receptor 1 , Phospholipid Hydroperoxide Glutathione Peroxidase , Animals , Humans , Mice , Antigens, Ly/metabolism , Colitis, Ulcerative/pathology , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/genetics , Ferroptosis/genetics , Immunity, Innate , Inflammation/pathology , Inflammation/metabolism , Interleukin-22 , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Intestines/pathology , Lymphocytes/metabolism , Lymphocytes/immunology , Mice, Inbred C57BL , Mice, Knockout , Natural Cytotoxicity Triggering Receptor 1/metabolism , Natural Cytotoxicity Triggering Receptor 1/genetics , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Signal Transduction , Male , Female
4.
Angew Chem Int Ed Engl ; : e202414726, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39215589

ABSTRACT

Functionalized isocyanide chemistry represents an important research area in organic synthesis. A structurally unique 2-isocyanophenl propargylic ester has been designed to incorporate the reactivity of isocyanide and propargylic ester. Thus, the reaction of 2-isocyanophenyl propargylic ester and 2-aminoaromatic aldimine facilitates the synthesis of a wide range of polycyclic benzo[b]indolo[3,2-h][1,6]naphthyridine derivatives. Furthermore, reacting with 2-hydroxyaromatic aldimine enables the divergent synthesis of both the aforementioned scaffolds and another structurally distinctive diazabenzo[f]naphtho[2,3,4-ij]azulenes featuring a [7-6-5] core skeleton. Experimental results and DFT calculations suggest that these transformations likely proceed via the in situ generation of a strained cyclopropen-imine species followed by [3+2] cycloaddition. Next, switchable nucleophilic attack/ring-expansion/aromatization and nucleophilic addition/ring-expansion/elimination account for the observed selectivity.

5.
Commun Biol ; 7(1): 914, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075283

ABSTRACT

Group 3 innate lymphoid cells (ILC3s) play key roles in intestinal inflammation. Olfactomedin 4 (OLFM4) is highly expressed in the colon and has a potential role in dextran sodium sulfate-induced colitis. However, the detailed mechanisms underlying the effects of OLFM4 on ILC3-mediated colitis remain unclear. In this study, we identify OLFM4 as a positive regulator of IL-22+ILC3. OLFM4 expression in colonic ILC3s increases substantially during intestinal inflammation in humans and mice. Compared to littermate controls, OLFM4-deficient (OLFM4-/-) mice are more susceptible to bacterial infection and display greater resistance to anti-CD40 induced innate colitis, together with impaired IL-22 production by ILC3, and ILC3s from OLFM4-/-mice are defective in pathogen resistance. Besides, mice with OLFM4 deficiency in the RORγt compartment exhibit the same trend as in OLFM4-/-mice, including colonic inflammation and IL-22 production. Mechanistically, the decrease in IL-22+ILC3 caused by OLFM4 deficiency involves the apoptosis signal-regulating kinase 1 (ASK1)- p38 MAPK signaling-dependent downregulation of RAR-related orphan receptor gamma (RORγt) protein. The OLFM4-metadherin (MTDH) complex upregulates p38/RORγt signaling, which is necessary for IL-22+ILC3 activation. The findings indicate that OLFM4 is a novel regulator of IL-22+ILC3 and essential for modulating intestinal inflammation and tissue homeostasis.


Subject(s)
Colitis , Interleukin-22 , Interleukins , Mice, Knockout , Animals , Mice , Interleukins/metabolism , Interleukins/genetics , Colitis/genetics , Colitis/chemically induced , Colitis/metabolism , Colitis/immunology , Colitis/pathology , Humans , Lymphocytes/immunology , Lymphocytes/metabolism , Mice, Inbred C57BL , Granulocyte Colony-Stimulating Factor/metabolism , Granulocyte Colony-Stimulating Factor/genetics , Immunity, Innate , Inflammation/metabolism , Inflammation/genetics , Male , Glycoproteins
6.
Sheng Wu Gong Cheng Xue Bao ; 40(7): 2022-2037, 2024 Jul 25.
Article in Chinese | MEDLINE | ID: mdl-39044573

ABSTRACT

CpxA is a key member of the envelope stress-responsive Cpx two-component system ubiquitous in Gram-negative bacteria. It is responsible for signal sensing and has dual activities of phosphatase and kinase. CpxA has been revealed to participate in the regulation of physiological processes such as virulence and antimicrobial resistance of bacteria. In recent years, the development of novel antimicrobials targeting CpxA has attracted much attention. Drugs developed based on inhibition of the phosphatase activity of CpxA have shown effectiveness in the treatment of urinary tract infections caused by Escherichia coli. This review introduces the structure and functional domains of CpxA and the activation of Cpx pathways by CpxA. Furthermore, it summarizes the roles of CpxA in the development of antimicrobial resistance and the regulation of bacterial virulence and reviews the latest progress in the development of new antimicrobials targeting this protein. It is expected to assist in the exploration of CpxA-targeting anti-infection strategies for severely antimicrobial-resistant bacteria whose clinical infections are of urgent need to be controlled.


Subject(s)
Bacterial Proteins , Drug Resistance, Bacterial , Virulence , Drug Resistance, Bacterial/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Mutation , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/metabolism , Protein Kinases
7.
Ecotoxicol Environ Saf ; 282: 116685, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38971096

ABSTRACT

Despite the associations of dietary patterns and air pollution with human reproductive health have been demonstrated, the interaction of maternal preconception diet and PM2.5 and its components exposure on in vitro fertilization (IVF) treatment outcomes has not been investigated. A total of 2688 couples from an ongoing prospective cohort were included. Principle component analysis with varimax rotation was performed to determine dietary patterns. One-year and 85-day average PM2.5 and its components exposure levels before oocyte retrieval were estimated. Generalized linear regression models were conducted to assess the association of dietary patterns and PM2.5 and its components exposure with IVF outcomes. Interactive effects of dietary patterns on the association between PM2.5 and its components and IVF outcomes were evaluated by stratified analyses based on different dietary patterns. A positive association between the "Fruits-Vegetables-Dairy" pattern and normal fertilization (p-trend = 0.009), Day 3 available embryos (p-trend = 0.048), and top-quality embryos (p-trend = 0.041) was detected. Conversely, women with higher adherence to the "Puffed food-Bakery-Candy" pattern were less likely to achieve Day 3 available embryos (p-trend = 0.042) and top-quality embryos (p-trend = 0.030), clinical pregnancy (p-trend = 0.049), and live birth (p-trend = 0.020). Additionally, increased intake of animal organs and seafood improved the odds of live birth (p-trend = 0.048). Exposure to PM2.5, SO42-, organic matter (OM), and black carbon (BC) had adverse effects on embryo development and pregnancy outcomes. Furthermore, our findings indicated that the effects of PM2.5 components exposure on normal fertilization and embryo quality were modified by the "Grains-Tubers-Legumes". Moreover, moderate intake of animal organs and seafood appeared to attenuate the effect of NO3- and NH4+ on the risk of early abortion. Our findings provide human evidence of the interaction between dietary patterns and PM2.5 exposure on IVF outcomes during preconception, implicating the potential for dietary interventions in infertile women to improve reproductive outcomes under conditions of unavoidable ambient air-pollutant exposure.


Subject(s)
Air Pollutants , Diet , Fertilization in Vitro , Particulate Matter , Female , Humans , Particulate Matter/analysis , Adult , Pregnancy , Diet/statistics & numerical data , Prospective Studies , Air Pollutants/analysis , Air Pollution/statistics & numerical data , Maternal Exposure/statistics & numerical data , Male , Dietary Patterns
8.
Mikrochim Acta ; 191(8): 470, 2024 07 18.
Article in English | MEDLINE | ID: mdl-39023769

ABSTRACT

A CRISPR/Cas12a-coupled multiplexed strand displacement amplification (CMSDA) for the detection of miR155 has been developed. Non-specific amplification was avoided by designing a single-stranded DNA template with a hairpin structure. The detection target miR155 was used as a primer to initiate a multiple-strand displacement reaction to produce abundant ssDNA. ssDNA was recognized by the Cas12a/CrRNA binary complex, activating the trans-cleaving activity of Cas12a. The multiple-strand displacement reaction is more efficiently detected compared with a single-strand displacement reaction. The detection range is from 250 pM to 1 nM, and the limit of the detection is 6.5 pM. The proposed method showed a good applicability in complex serum environments, indicating that the method has a broad prospect for disease detection and clinical application. In addition, we designed a dual-cavity PCR tube, which realized one-tube detection of miRNA155 and avoided open-cap contamination.


Subject(s)
CRISPR-Cas Systems , MicroRNAs , MicroRNAs/analysis , MicroRNAs/blood , MicroRNAs/genetics , Humans , CRISPR-Cas Systems/genetics , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/genetics , Limit of Detection , Nucleic Acid Amplification Techniques/methods , Polymerase Chain Reaction/methods , Bacterial Proteins , Endodeoxyribonucleases , CRISPR-Associated Proteins
9.
Org Lett ; 26(30): 6335-6340, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39046225

ABSTRACT

An unprecedented trimethylsilyl trifluoromethanesulfonate (TMSOTf)-promoted selective double insertion of isocyanides into aldehydes was developed, providing an efficient protocol for synthetically challenging ß-carbonyl α-iminoamides. The given approach is applicable for a diverse selection of readily accessible aldehydes, along with isocyanides serving as essential precursors for "amide" and "imine" scaffolds. The versatile transformations of the given products were demonstrated, and the pivotal intermediates for the plausible mechanism were identified.

10.
Huan Jing Ke Xue ; 45(7): 4361-4374, 2024 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-39022980

ABSTRACT

In order to systematically understand the urban environmental benefit improvement of municipal solid waste (MSW) classification, based on the disposal data of MSW before and after the MSW classification in Suzhou from 2017 to 2021, the environmental impact potential (EIP) of the MSW collection-transportation-disposal process was calculated, and the environmental benefits of the MSW integrated management in Suzhou to 2035 were predicted. After the MSW classification in Suzhou at the end of 2019, the EIP (in terms of PET2000, the same below) of the per unit weight of MSW was reduced by 18.38% from 2.34×10-13 t-1 in 2017 to 1.91×10-13 t-1 in 2021. The environmental benefits of the MSW integrated management could be improved by classification. Based on the Suzhou MSW removal and transportation situation in 2021, different classification and disposal scenarios were established to calculate. It was found that after the classification effect showed gradient improvement, and the disposal capacity matched accordingly, the environmental benefits of MSW were further improved. Under the planning disposal capacity scenario of "zero waste to landfill", the EIP and the total carbon emissions of per unit weight of MSW should be reduced by 23.96% and 30.73%, respectively, compared with the actual situation in 2021. Based on the linear model of population and economic development level of Suzhou, it is expected that the annual production of MSW in Suzhou will be increased to 6.965 million tons in 2035. Under the background of continuous improvement of MSW classification and continuous optimization of city appearance and environment in Suzhou, based on the status quo of terminal disposal capacity in Suzhou, the EIP of per unit weight of MSW after improving the efficiency of classification by 2035 was predicted to be 1.54×10-13 t-1, the total EIP would be 1.05×10-6, and the total carbon emissions would increase to 3.80 million tons. Under the ideal scenario of expanding the scale of waste disposal, "zero landfill" of raw MSW, and full resource utilization of food waste, the EIP of per unit weight of MSW in 2035 was predicted to be 1.28×10-13 t-1, and the total EIP and the total carbon emissions would be 8.69×10-7 and 3.23 million tons, respectively, which was approximately 5.65% and 1.23% less than the actual scenario in 2021, respectively. The EIP and carbon emissions of MSW integrated management could be controlled better by the coordinated promotion of classified collection and transportation and quality disposal.

11.
Am J Physiol Cell Physiol ; 327(2): C291-C309, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38826136

ABSTRACT

Per- and polyfluoroalkyl substances (PFASs) are a family of "forever chemicals" including perfluorooctane sulfonate (PFOS). These toxic chemicals do not break down in the environment or in our bodies. In the human body, PFOS and perfluoroctanoic acid (PFOA) have a half-life (T1/2) of about 4-5 yr so low daily consumption of these chemicals can accumulate in the human body to a harmful level over a long period. Although the use of PFOS in consumer products was banned in the United States in 2022/2023, this forever chemical remains detectable in our tap water and food products. Every American tested has a high level of PFAS in their blood (https://cleanwater.org/pfas-forever-chemicals). In this report, we used a Sertoli cell blood-testis barrier (BTB) model with primary Sertoli cells cultured in vitro with an established functional tight junction (TJ)-permeability barrier that mimicked the BTB in vivo. Treatment of Sertoli cells with PFOS was found to perturb the TJ-barrier, which was the result of cytoskeletal disruption across the cell cytoplasm, disrupting actin and microtubule polymerization. These changes thus affected the proper localization of BTB-associated proteins at the BTB. Using RNA-Seq transcriptome profiling, bioinformatics analysis, and pertinent biochemical and cell biology techniques, it was discovered that PFOS -induced Sertoli cell toxicity through the c-Jun N-terminal kinase (JNK; also known as stress-activated protein kinase, SAPK) and its phosphorylated/active form p-JNK signaling pathway. More importantly, KB-R7943 mesylate (KB), a JNK/p-JNK activator, was capable of blocking PFOS-induced Sertoli cell injury, supporting the notion that PFOS-induced cell injury can possibly be therapeutically managed.NEW & NOTEWORTHY PFOS induces Sertoli cell injury, including disruption of the 1) blood-testis barrier function and 2) cytoskeletal organization, which, in turn, impedes male reproductive function. These changes are mediated by JNK/p-JNK signaling pathway. However, the use of KB-R7943, a JNK/p-JNK activator was capable of blocking PFOS-induced Sertoli cell injury, supporting the possibility of therapeutically managing PFOS-induced reproductive dysfunction.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , JNK Mitogen-Activated Protein Kinases , Sertoli Cells , Fluorocarbons/toxicity , Alkanesulfonic Acids/toxicity , Male , Animals , Sertoli Cells/drug effects , Sertoli Cells/metabolism , Sertoli Cells/pathology , JNK Mitogen-Activated Protein Kinases/metabolism , JNK Mitogen-Activated Protein Kinases/genetics , RNA-Seq , Blood-Testis Barrier/drug effects , Blood-Testis Barrier/metabolism , Tight Junctions/drug effects , Tight Junctions/metabolism , Tight Junctions/pathology , Cells, Cultured , Mice , Rats , Rats, Sprague-Dawley
12.
Brain Res Bull ; 215: 111022, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38936669

ABSTRACT

Post-stroke depression (PSD) is a psychological disease that can occur following a stroke and is associated with serious consequences. Research on the pathogenesis and treatment of PSD is still in the infancy stage. Patients with PSD often exhibit gastrointestinal symptoms; therefore the role of gut microbiota in the pathophysiology and potential treatment effects of PSD has become a hot topic of research. In this review, describe the research on the pathogenesis and therapy of PSD. We also describe how the gut microbiota influences neurotransmitters, the endocrine system, energy metabolism, and the immune system. It was proposed that the gut microbiota is involved in the pathogenesis and treatment of PSD through the regulation of neurotransmitter levels, vagal signaling, hypothalamic-pituitary-adrenal axis activation and inhibition, hormone secretion and release, in addition to immunity and inflammation.


Subject(s)
Gastrointestinal Microbiome , Stroke , Humans , Gastrointestinal Microbiome/physiology , Stroke/immunology , Stroke/microbiology , Depression/microbiology , Hypothalamo-Hypophyseal System/metabolism , Animals , Pituitary-Adrenal System/metabolism
13.
ACS Appl Mater Interfaces ; 16(27): 34720-34731, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38934381

ABSTRACT

Anti-inflammatory and angiogenesis are two important factors in wound healing. Wound dressings with anti-inflammation and vascularization are essential to address complex interventions, expensive treatments, and uncontrolled release mechanisms. Based on the above considerations, we designed a near-infrared (NIR)-responsive hydrogel dressing, which is composed of mPDA-DFO@LA nanoparticles (mPDA: dopamine hydrochloride nanoparticles, DFO: deferoxamine, LA: lauric acid), valsartan (abbreviated as Va), and dopamine-hyaluronic acid hydrogel. The hydrogel dressing demonstrated injectability, bioadhesive, and photothermal properties. The results indicated the obtained dressing by releasing Va can appropriately regulate macrophage phenotype transformation from M1 to M2, resulting in an anti-inflammatory environment. In addition, DFO encapsulated by LA can be sustainably released into the wound site by NIR irradiation, which further prevents excessive neovascularization. Notably, the results in vivo indicated the mPDA-DFO@LA/Va hydrogel dressing significantly enhanced wound recovery, achieving a healing rate of up to 96% after 11 days of treatment. Therefore, this NIR-responsive hydrogel dressing with anti-inflammation, vascularization, and on-demand programmed drug release will be a promising wound dressing for wound infection.


Subject(s)
Anti-Inflammatory Agents , Bandages , Hydrogels , Nanocomposites , Wound Healing , Animals , Mice , Angiogenesis/drug effects , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Deferoxamine/chemistry , Deferoxamine/pharmacology , Deferoxamine/therapeutic use , Dopamine/chemistry , Dopamine/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Infrared Rays , Lauric Acids/chemistry , Lauric Acids/pharmacology , Nanocomposites/chemistry , Nanocomposites/therapeutic use , RAW 264.7 Cells , Wound Healing/drug effects
14.
Chem Commun (Camb) ; 60(52): 6667-6670, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38860504

ABSTRACT

Herein, a universal nucleic acid analysis platform was constructed for sensitive and accurate detection of miRNA-155 and ctDNA using isothermal amplification-assisted CRISPR/Cas12a and a tetrahedral DNA nanostructure (TDN) supported sensing interface. Under the optimal experimental conditions, the prepared sensor achieved specific detection of miRNA-155 and ctDNA at as low as aM levels in 2.6 h. Furthermore, the platform was also successfully applied to human serum sample recovery experiments and cancer cell lysates, demonstrating outstanding reliability and accuracy. We firmly believe that this work provides a universal, sensitive, and practical tool for early clinical diagnosis.


Subject(s)
Biosensing Techniques , CRISPR-Cas Systems , DNA , Electrochemical Techniques , MicroRNAs , Humans , CRISPR-Cas Systems/genetics , MicroRNAs/analysis , MicroRNAs/blood , DNA/chemistry , Nucleic Acid Amplification Techniques , Circulating Tumor DNA/blood , Nanostructures/chemistry , Limit of Detection , Bacterial Proteins , Endodeoxyribonucleases , CRISPR-Associated Proteins
15.
Sci Rep ; 14(1): 14344, 2024 06 21.
Article in English | MEDLINE | ID: mdl-38906933

ABSTRACT

Sysmex DI-60 enumerates and classifies leukocytes. Limited research has evaluated the performance of Sysmex DI-60 in abnormal samples, and most focused on leukopenic samples. We evaluate the efficacy of DI-60 in determining white blood cell (WBC) differentials in normal and abnormal samples in different WBC count. Peripheral blood smears (n = 166) were categorised into normal control and disease groups, and further divided into moderate and severe leucocytosis, mild leucocytosis, normal, mild leukopenia, and moderate and severe leukopenia groups based on WBC count. DI-60 preclassification and verification and manual counting results were assessed using Bland-Altman and Passing-Bablok regression analyses. The Kappa test compared the concordance in the abnormal cell detection between DI-60 and manual counting. DI-60 exhibited notable overall sensitivity and specificity for all cells, except basophils. The correlation between the DI-60 preclassification and manual counting was high for segmented neutrophils, band neutrophils, lymphocytes, and blasts, and improved for all cell classes after verification. The mean difference between DI-60 and manual counting for all cell classes was significantly high in moderate and severe leucocytosis (WBC > 30.0 × 109/L) and moderate and severe leukopenia (WBC < 1.5 × 109/L) groups. For blast cells, immature granulocytes, and atypical lymphocytes, the DI-60 verification results were similar to the manual counting results. Plasma cells showed poor agreement. In conclusion, DI-60 demonstrates consistent and reliable analysis of WBC differentials within the range of 1.5-30.0 × 109. Manual counting was indispensable in examining moderate and severe leucocytosis samples, moderate and severe leukopenia samples, and in enumerating of monocytes and plasma cells.


Subject(s)
Leukocytes , Leukopenia , Humans , Leukocyte Count/methods , Leukocyte Count/instrumentation , Leukocytes/cytology , Leukocytes/pathology , Leukopenia/diagnosis , Leukopenia/blood , Leukopenia/pathology , Leukocytosis/blood , Leukocytosis/diagnosis , Leukocytosis/pathology , Sensitivity and Specificity , Female , Male , Neutrophils/cytology , Neutrophils/pathology , Middle Aged
17.
Int Immunopharmacol ; 135: 112291, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38772300

ABSTRACT

BACKGROUND: The impact of COVID-19 on reproductive health is controversial. The association between female SARS-CoV-2 infection and laboratory and pregnancy outcomes following subsequent in vitro fertilization (IVF) treatment remains unclear. This study aimed to investigate the relationship between IVF treatment at different time intervals after SARS-CoV-2 infection and reproductive outcomes. METHODS: A prospective cohort study of 920 IVF cycles post-SARS-CoV-2 infection was conducted. Modified Poisson regression and logistic regression models were utilized to evaluate oocyte- and embryo-related outcomes as well as clinical outcomes. Stratified analyses were also performed based on the vaccination status of the female participants. RESULTS: SARS-CoV-2 infection within three months was associated with reduced available [Adjusted RR (aRR): 0.96, 95 %CI: 0.91-1.00] and top-quality embryos (aRR: 0.90, 95 %CI: 0.83-0.98) in subsequent IVF treatment. Among patients failing to finish the three-dose vaccination, the interval between SARS-CoV-2 infection and cycle initiation of less than 90 days was associated with a lower number of oocytes retrieval (aRR: 8.81, 95 %CI: 8.24-9.41 vs aRR: 9.64, 95 %CI: 9.06-10.25), available embryos (aRR: 0.93, 95 %CI: 0.88-0.99), and top-quality embryos (aRR: 0.81, 95 %CI: 0.72-0.91) rather than among fully vaccinated women. Moreover, COVID-19 infection was not associated with biochemical pregnancy, clinical pregnancy, embryo implantation, and early abortion either in fresh embryo transfer (ET) or frozen ET. CONCLUSIONS: This study indicated that initiating IVF treatment within 90 days of SARS-CoV-2 infection might reduce the likelihood of obtaining available and top-quality embryos, especially among those who had not completed the three-dose vaccination. Nevertheless, female COVID-19 infection did not affect pregnancy or early abortion. Further rigorously designed studies are required to support these findings.


Subject(s)
COVID-19 Vaccines , COVID-19 , Fertilization in Vitro , SARS-CoV-2 , Vaccination , Humans , Female , COVID-19/prevention & control , COVID-19/therapy , Pregnancy , Adult , Prospective Studies , SARS-CoV-2/immunology , COVID-19 Vaccines/administration & dosage , Pregnancy Outcome , Cohort Studies
18.
Ecotoxicol Environ Saf ; 279: 116502, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38788563

ABSTRACT

BACKGROUND: Despite the known reproductive toxicity induced by triptolide (TP) exposure, the regulatory mechanism underlying testicular vacuolization injury caused by TP remains largely obscure. METHODS: Male mice were subjected to TP at doses of 15, 30, and 60 µg/kg for 35 consecutive days. Primary Sertoli cells were isolated from 20-day-old rat testes and exposed to TP at concentrations of 0, 40, 80, 160, 320, and 640 nM. A Biotin tracer assay was conducted to assess the integrity of the blood-testis barrier (BTB). Transepithelial electrical resistance (TER) assays were employed to investigate BTB function in primary Sertoli cells. Histological structures of the testes and epididymides were stained with hematoxylin and eosin (H&E). The expression and localization of relevant proteins or pathways were assessed through Western blotting or immunofluorescence staining. RESULTS: TP exposure led to dose-dependent testicular injuries, characterized by a decreased organ coefficient, reduced sperm concentration, and the formation of vacuolization damage. Furthermore, TP exposure disrupted BTB integrity by reducing the expression levels of tight junction (TJ) proteins in the testes without affecting basal ectoplasmic specialization (basal ES) proteins. Through the TER assay, we identified that a TP concentration of 160 nM was optimal for elucidating BTB function in primary Sertoli cells, correlating with reductions in TJ protein expression. Moreover, TP exposure induced changes in the distribution of the BTB and cytoskeleton-associated proteins in primary Sertoli cells. By activating the AKT/mTOR signaling pathway, TP exposure disturbed the balance between mTORC1 and mTORC2, ultimately compromising BTB integrity in Sertoli cells. CONCLUSION: This investigation sheds light on the impacts of TP exposure on testes, elucidating the mechanism by which TP exposure leads to testicular vacuolization injury and offering valuable insights into comprehending the toxic effects of TP exposure on testes.


Subject(s)
Blood-Testis Barrier , Cytoskeleton , Diterpenes , Epoxy Compounds , Phenanthrenes , Proto-Oncogene Proteins c-akt , Sertoli Cells , Signal Transduction , TOR Serine-Threonine Kinases , Testis , Male , Animals , Sertoli Cells/drug effects , Sertoli Cells/pathology , Diterpenes/toxicity , Phenanthrenes/toxicity , TOR Serine-Threonine Kinases/metabolism , Signal Transduction/drug effects , Testis/drug effects , Testis/pathology , Epoxy Compounds/toxicity , Proto-Oncogene Proteins c-akt/metabolism , Mice , Blood-Testis Barrier/drug effects , Blood-Testis Barrier/pathology , Cytoskeleton/drug effects , Rats , Vacuoles/drug effects , Rats, Sprague-Dawley
19.
Anal Chem ; 96(18): 6930-6939, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38652001

ABSTRACT

Circulating tumor DNA (ctDNA) holds great promise as a noninvasive biomarker for cancer diagnosis, treatment, and prognosis. However, the accurate and specific quantification of low-abundance ctDNA in serum remains a significant challenge. This study introduced, for the first time, a novel exponential amplification reaction (EXPAR)-assisted CRISPR/Cas12a-mediated ratiometric dual-signal electrochemical biosensor for ultrasensitive and reliable detection of ctDNA. To implement the dual-signal strategy, a signal unit (ssDNA-MB@Fc/UiO-66-NH2) was prepared, consisting of methylene blue-modified ssDNA as the biogate to encapsulate ferrocene signal molecules within UiO-66-NH2 nanocarriers. The presence of target ctDNA KRAS triggered EXPAR amplification, generating numerous activators for Cas12a activation, resulting in the cleavage of ssDNA-P fully complementary to the ssDNA-MB biogate. Due to the inability to form a rigid structure dsDNA (ssDNA-MB/ssDNA-P), the separation of ssDNA-MB biogate from the UiO-66-NH2 surface was hindered by electrostatic interactions. Consequently, the supernatant collected after centrifugation exhibited either no or only a weak presence of Fc and MB signal molecules. Conversely, in the absence of the target ctDNA, the ssDNA-MB biogate was open, leading to the leakage of Fc signal molecules. This clever ratiometric strategy with Cas12a as the "connector", reflecting the concentration of ctDNA KRAS based on the ratio of the current intensities of the two electroactive signal molecules, enhanced detection sensitivity by at least 60-300 times compared to single-signal strategies. Moreover, this strategy demonstrated satisfactory performance in ctDNA detection in complex human serum, highlighting its potential for cancer diagnosis.


Subject(s)
Biosensing Techniques , Circulating Tumor DNA , Electrochemical Techniques , Humans , Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics , CRISPR-Cas Systems/genetics , DNA, Single-Stranded/chemistry , Limit of Detection , Endodeoxyribonucleases/chemistry , Proto-Oncogene Proteins p21(ras)/genetics , CRISPR-Associated Proteins/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/genetics
20.
Opt Express ; 32(6): 9397-9404, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38571175

ABSTRACT

This research proposed a novel pulse-shaping design for directly shaping distorted pulses after the amplification. Based on the principle of the design we made a pulse shaper. With this pulse shaper, we successfully manipulate the pulse's leading edge and width to achieve an 'M'-shaped waveform in an amplification system. Comparative experiments were conducted within this system to compare the output with and without the integration of the pulse shaper. The results show a significant suppression of the nonlinear effect upon adding the pulse shaper. This flexible and effective pulse shaper can be easily integrated into a high-power all-fiber system, supplying the capability to realize the desired output waveform and enhance the spectral quality.

SELECTION OF CITATIONS
SEARCH DETAIL