Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 165
Filter
1.
J Hematol Oncol ; 17(1): 78, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39218945

ABSTRACT

BACKGROUND: Ferroptosis, characterized by iron-dependent lipid peroxidation, emerges as a promising avenue for hepatocellular carcinoma (HCC) intervention due to its tumor susceptibility. RNA N6-methyladenosine (m6A) modification has been involved in several types of regulated cell death. However, the roles and molecular mechanisms of m6A-related regulators in HCC cell ferroptosis remain unclear. METHODS: By examining a series of m6A modification enzymes upon ferroptosis induction or inhibition, we identified METTL16 as a novel ferroptotic repressor in HCC cells. The roles of METTL16 on ferroptosis and HCC development were investigated in multiple cell lines, human HCC organoids, subcutaneous xenografts and MYC/Trp53-/- HCC model in hepatocyte-specific Mettl16 knockout and overexpression mice. The underlying mechanism was elucidated with MeRIP/RIP-qPCR, luciferase assay, Co-IP assay and Mass Spectrometry. The clinical significance and relevance were evaluated in human samples. RESULTS: High METTL16 expression confers ferroptosis resistance in HCC cells and mouse models, and promotes cell viability and tumor progression. Mechanistically, METTL16 collaborates with IGF2BP2 to modulate SENP3 mRNA stability in an m6A-dependent manner, and the latter impedes the proteasome-mediated ubiquitination degradation of Lactotransferrin (LTF) via de-SUMOylation. Elevated LTF expression facilitates the chelation of free iron and reduces liable iron pool level. SENP3 and LTF are implicated in METTL16-mediated HCC progression and anti-ferroptotic effects both in vivo and in vitro. Clinically, METTL16 and SENP3 expression were positively correlated, and high METTL16 and SENP3 expression predicts poor prognosis in human HCC samples. CONCLUSIONS: Our study reveals a new METTL16-SENP3-LTF signaling axis regulating ferroptosis and driving HCC development. Targeting this axis is a promising strategy for sensitizing ferroptosis and against HCC.


Subject(s)
Carcinoma, Hepatocellular , Ferroptosis , Liver Neoplasms , Methyltransferases , RNA-Binding Proteins , Animals , Humans , Mice , Carcinogenesis/metabolism , Carcinogenesis/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Cell Line, Tumor , Cysteine Endopeptidases , Ferroptosis/genetics , Gene Expression Regulation, Neoplastic , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Methyltransferases/metabolism , Methyltransferases/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics
3.
Nat Nanotechnol ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090286

ABSTRACT

Topological photonics offers the opportunity to control light propagation in a way that is robust from fabrication disorders and imperfections. However, experimental demonstrations have remained on the order of the vacuum wavelength. Theoretical proposals have shown topological edge states that can propagate robustly while embracing deep subwavelength confinement that defies diffraction limits. Here we show the experimental proof of these deep subwavelength topological edge states by implementing periodic modulation of hyperbolic phonon polaritons within a van der Waals heterostructure composed of isotopically pure hexagonal boron nitride flakes on patterned gold films. The topological edge state is confined in a subdiffraction volume of 0.021 µm3, which is four orders of magnitude smaller than the free-space excitation wavelength volume used to probe the system, while maintaining the resonance quality factor above 100. This finding can be directly extended to and hybridized with other van der Waals materials to broadened operational frequency ranges, streamline integration of diverse polaritonic materials, and compatibility with electronic and excitonic systems.

4.
Heliyon ; 10(12): e33170, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39021996

ABSTRACT

Objective: To investigate the effects of a high-fat diet (HFD) on the gut bacterium Roseburia intestinalis and butyric acid levels, and to assess their impact on ovarian function and epigenetic markers in mice. Methods: A total of 20 female ICR mice aged 4 weeks were randomly assigned to two groups and fed either a control diet (CD) or an HFD for 36 weeks. Post-intervention, ileal contents were analyzed for the quantification of butyric acid using ELISA, while feces were obtained for Roseburia intestinalis expression assessment via qPCR. Histological evaluations of intestinal and ovarian tissues included H&E and Alcian Blue-Periodic Acid Schiff (AB-PAS) staining, alongside immunohistochemical analysis for F4/80, and immunofluorescent detection of Occludin, ZO-1, 5 mC, and H3K36me3. Ovarian health was assessed through follicle counts and morphological evaluations. Statistical analyses were performed using GraphPad Prism 8.0, with P < 0.05 considered significant. Results: After 36 weeks, the HFD group showed significantly higher body weight compared to the CD group (P < 0.01). The HFD led to a decrease in Roseburia intestinalis and butyric acid levels, a reduction in intestinal goblet cells, and an increase in intestinal inflammation. Histological analyses revealed impaired ovarian follicular development and enhanced inflammation in the HFD mice, with immunofluorescent staining showing downregulation of the ovarian epigenetic markers 5 mC and H3K36me3. Conclusion: Our study demonstrates that long-term HFD negatively impacts ovarian function and epigenetic regulation. We found decreased levels of the gut bacterium Roseburia intestinalis and its metabolite, butyric acid, which contribute to these adverse effects. Additionally, the associated intestinal inflammation and compromised mucosal barrier may contribute to these adverse outcomes on female reproductive health.

5.
Phys Rev Lett ; 132(24): 243802, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38949371

ABSTRACT

Orbital angular momentum (OAM) provides an additional degree of freedom for optical communication systems, and manipulating on-chip OAM is important in integrated photonics. However, there is no effective method to realize OAM topological charge conversion on chip. In this Letter, we propose a way to convert OAM by encircling two groups of exceptional points in different Riemann sheets. In our framework, any OAM conversion can be achieved on demand just by manipulating adiabatic and nonadiabatic evolution of modes in two on-chip waveguides. More importantly, the chiral OAM conversion is realized, which is of great significance since the path direction can determine the final topological charge order. Our Letter presents a special chiral behavior and provides a new method to manipulate OAM on the chip.

6.
Cancer Res ; 84(17): 2776-2791, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-38885324

ABSTRACT

Cellular oxidative stress plays a key role in the development and progression of hepatocellular carcinoma (HCC). A better understanding of the processes that regulate reactive oxygen species (ROS) homeostasis could uncover improved strategies for treating HCC. Herein, we identified protein kinase with-no-lysine kinase 1 (WNK1) as an antioxidative factor and therapeutic target in HCC. In human HCC, WNK1 expression was increased and correlated with poor patient prognosis. WNK1 knockdown significantly inhibited cell proliferation and xenograft tumor growth. Mechanistically, WNK1 competed with nuclear factor erythroid 2-related factor 2 (NRF2) for binding with the partial Kelch domain of Kelch-like ECH-associated protein 1 (KEAP1), reducing NRF2 ubiquitination and promoting NRF2 accumulation and nuclear translocation to increase antioxidant response. WNK1 silencing increased H2O2-induced apoptosis and inhibited cell growth by elevating ROS levels, which could be rescued by treatment with the antioxidant N-acetylcysteine and NRF2 activator tert-butylhydroquinone. Liver-specific WNK1 knockout mouse models of HCC substantiated that WNK1 promoted HCC development by regulating ROS levels. WNK463, an inhibitor of the WNK kinase family, suppressed HCC progression and altered the redox status. These findings suggest that WNK1 plays a critical role in HCC development and progression and that the WNK1-oxidative stress axis may be a promising therapeutic target for HCC. Significance: Inhibiting WNK1 induces NRF2 degradation and reduces the oxidative stress response to suppress hepatocellular carcinoma growth, indicating that targeting the WNK1-KEAP1-NRF2 axis is a potential strategy to treat liver cancer.


Subject(s)
Carcinoma, Hepatocellular , Kelch-Like ECH-Associated Protein 1 , Liver Neoplasms , NF-E2-Related Factor 2 , Oxidative Stress , Reactive Oxygen Species , WNK Lysine-Deficient Protein Kinase 1 , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Humans , Animals , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/genetics , WNK Lysine-Deficient Protein Kinase 1/metabolism , WNK Lysine-Deficient Protein Kinase 1/genetics , Mice , Reactive Oxygen Species/metabolism , Mice, Knockout , Cell Proliferation , Apoptosis , Male , Cell Line, Tumor , Mice, Nude , Xenograft Model Antitumor Assays
7.
Sci Adv ; 10(25): eadm7569, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38896615

ABSTRACT

Realizing a multifunctional integrated photonic platform is one of the goals for future optical information processing, which usually requires large size to realize due to multiple integration challenges. Here, we realize a multifunctional integrated photonic platform with ultracompact footprint based on inverse design. The photonic platform is compact with 86 inverse designed-fixed couplers and 91 phase shifters. The footprint of each coupler is 4 µm by 2 µm, while the whole photonic platform is 3 mm by 0.2 mm-one order of magnitude smaller than previous designs. One-dimensional Floquet Su-Schrieffer-Heeger model and Aubry-André-Harper model are performed with measured fidelities of 97.90 (±0.52) % and 99.34 (±0.44) %, respectively. We also demonstrate a handwritten digits classification task with the test accuracy of 87% using on-chip training. Moreover, the scalability of this platform has been proved by demonstrating more complex computing tasks. This work provides an effective method to realize an ultrasmall integrated photonic platform.

8.
Cancer Sci ; 115(6): 1851-1865, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38581120

ABSTRACT

Aberrant expression of forkhead box transcription factor 1 (FOXM1) plays critical roles in a variety of human malignancies and predicts poor prognosis. However, little is known about the crosstalk between FOXM1 and long noncoding RNAs (lncRNAs) in tumorigenesis. The present study identifies a previously uncharacterized lncRNA XLOC_008672 in gastric cancer (GC), which is regulated by FOXM1 and possesses multiple copies of tandem repetitive sequences. LncRNA microarrays are used to screen differentially expressed lncRNAs in FOXM1 knockdown GC cells, and then the highest fold downregulation lncRNA XLOC_008672 is screened out. Sequence analysis reveals that the new lncRNA contains 62 copies of 37-bp tandem repeats. It is transcriptionally activated by FOXM1 and functions as a downstream effector of FOXM1 in GC cells through in vitro and in vivo functional assays. Elevated expression of XLOC_008672 is found in GC tissues and indicates worse prognosis. Mechanistically, XLOC_008672 can bind to small nuclear ribonucleoprotein polypeptide A (SNRPA), thereby enhancing mRNA stability of Ras-GTPase-activating protein SH3 domain-binding protein 1 (G3BP1) and, consequently, facilitating GC cell proliferation and migration. Our study discovers a new uncharacterized lncRNA XLOC_008672 involved in GC carcinogenesis and progression. Targeting FOXM1/XLOC_008672/SNRPA/G3BP1 signaling axis might be a promising therapeutic strategy for GC.


Subject(s)
Carcinogenesis , Cell Proliferation , Forkhead Box Protein M1 , Gene Expression Regulation, Neoplastic , RNA, Long Noncoding , Stomach Neoplasms , Animals , Female , Humans , Male , Mice , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , DNA Helicases , Forkhead Box Protein M1/genetics , Forkhead Box Protein M1/metabolism , Mice, Nude , Poly-ADP-Ribose Binding Proteins/genetics , Poly-ADP-Ribose Binding Proteins/metabolism , Prognosis , RNA Helicases , RNA Recognition Motif Proteins/genetics , RNA Recognition Motif Proteins/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Tandem Repeat Sequences/genetics
9.
Int J Nanomedicine ; 19: 3259-3273, 2024.
Article in English | MEDLINE | ID: mdl-38601347

ABSTRACT

Purpose: Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease involving synovial inflammation and joint destruction. Although therapeutic drugs for RA have some efficacy, they usually cause severe side effects and are expensive. RA is characterized by synovial hyperplasia, intra-articular hypoxia, upregulated expression of matrix metalloproteinases, and excessive accumulation of reactive oxygen species. The adverse microenvironment further aggravates activated macrophage infiltration. Therefore, controlling the microenvironment of diseased tissues and targeting the activated macrophages have become new therapeutic targets in RA patients. Methods: Here, microenvironment-targeting micelles (PVGLIG-MTX-Que-Ms) were synthesized using the thin film hydration method. In the inflammatory microenvironment, PVGLIG was cleaved by the highly expressed MMP-2, PEG5000 was eliminated, MTX was exposed, macrophage activation was targeted, and Que enrichment was enhanced. The cytotoxicity, targeting, antioxidant, and anti-inflammatory properties of drug-loaded micelles were tested in vitro. The drug-loaded micelles were used to treat CIA rats. In vivo targeting, expression of serum inflammatory factors, immunohistochemistry of the articular cartilage, and changes in immunofluorescence staining were observed. Results: The developed micelles had a particle size of (89.62 ±1.33) nm and a zeta potential of (-4.9 ±0.53) mV. The IC50 value of PVGLIG-MTX-Que-Ms (185.90 ±6.98) µmol/L was significantly lower than that of free Que (141.10 ±6.39) µmol/L. The synthesized micelles exhibited slow-release properties, low cytotoxicity, strong targeting abilities, and significant anti-inflammatory effects in vitro. In vivo, the drug-loaded micelles accumulated at the joint site for a long time. PVGLIG-MTX-Que-Ms significantly reduced joint swelling, improved bone destruction, and decreased the expression of serum inflammatory factors in CIA rats. Conclusion: The smart-targeting micelles PVGLIG-MTX-Que-Ms with strong targeting, anti-inflammatory, cartilage-protective, and other multiple positive effects are a promising new tool for RA treatment.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Humans , Rats , Animals , Methotrexate/chemistry , Micelles , Quercetin/pharmacology , Quercetin/therapeutic use , Arthritis, Rheumatoid/drug therapy , Inflammation/drug therapy , Anti-Inflammatory Agents/therapeutic use , Arthritis, Experimental/drug therapy
10.
Front Optoelectron ; 17(1): 11, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38679690

ABSTRACT

The topological photonics plays an important role in the fields of fundamental physics and photonic devices. The traditional method of designing topological system is based on the momentum space, which is not a direct and convenient way to grasp the topological properties, especially for the perturbative structures or coupled systems. Here, we propose an interdisciplinary approach to study the topological systems in real space through combining the information entropy and topological photonics. As a proof of concept, the Kagome model has been analyzed with information entropy. We reveal that the bandgap closing does not correspond to the topological edge state disappearing. This method can be used to identify the topological phase conveniently and directly, even the systems with perturbations or couplings. As a promotional validation, Su-Schrieffer-Heeger model and the valley-Hall photonic crystal have also been studied based on the information entropy method. This work provides a method to study topological photonic phase based on information theory, and brings inspiration to analyze the physical properties by taking advantage of interdisciplinarity.

11.
Cancer Gene Ther ; 31(5): 755-765, 2024 May.
Article in English | MEDLINE | ID: mdl-38555398

ABSTRACT

Anti-programmed cell death 1 (aPD1) therapy has yielded limited success in patients with colorectal cancer (CRC). Syndecan binding protein (SDCBP), encodes a PDZ domain-containing protein that is essential for cellular processes, including cell adhesion, migration, and signal transduction. Here, we investigated the effect of SDCBP on tumor progression, immunotherapy, and the tumor microenvironment (TME) in CRC. High expression of SDCBP is associated with non-response to immunotherapy and correlated with poorer disease-free survival (DFS) in CRC patients. Inhibiting SDCBP by transfecting shRNA or using its inhibitor zinc pyrithione (ZnPT) hindered proliferation and metastasis while enhancing the efficacy of aPD1 treatment in a mouse xenograft model and liver metastasis model. The TME of CRC was significantly altered following ZnPT treatment characterized by a reduced amount of M2 macrophages and a heightened percentage of M1 macrophages. The co-culture system of CRC cells and macrophages provided evidence that SDCBP silencing promoted the repolarisation of M2 macrophages into M1. SDCBP promotes the proliferation, metastasis, and immunotherapy resistance of CRC. Thus, ZnPT represents an effective SDCBP inhibitor and exhibits considerable potential for combination with aPD1 to enhance immunotherapy efficacy.


Subject(s)
Colorectal Neoplasms , Disease Progression , Immune Checkpoint Inhibitors , Syntenins , Tumor Microenvironment , Animals , Female , Humans , Male , Mice , Cell Line, Tumor , Cell Proliferation/drug effects , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Xenograft Model Antitumor Assays , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Syntenins/metabolism
12.
J Cell Commun Signal ; 18(1): e12017, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38545256

ABSTRACT

Gastric cancer (GC) is one of the most common solid cancers with high incidence and mortality worldwide. Chronic gastritis and consequent inflammatory microenvironment is known as a major cause leading to gastric carcinogenesis. Here we report that PIK3CD that encodes p110δ, a catalytic subunit of the class IA PI3Ks, is overexpressed and tumorigenic in GC and associated with tumor inflammatory microenvironment. By investigating the data from TCGA database and our immunohistochemical staining and quantitative real-time PCR results from clinical samples, we found PIK3CD exhibits higher expression level in GC tissues compared with adjacent non-tumorous stomach tissues. Genetic silencing of PIK3CD in GC cells retards proliferation and migration in vitro and tumorigenicity and metastasis in vivo. In contrast, enhanced expression of PIK3CD promotes these phenotypes in vitro. Furthermore, pharmacological inhibition of PIK3CD could reduce GC cell viability and colony formation capacities. More importantly, we reveal a relevant mechanism that PIK3CD, but not PIK3CA and PIK3CB, is transcriptionally regulated by the pro-inflammatory IL2/JAK3/STAT5 axis and tumor-infiltrating immune cells such as lymphocytes. These observations may setup a new crosstalk between tumor inflammatory microenvironment, IL2/JAK3/STAT5 signaling and PI3K/AKT signaling. Targeting PIK3CD may be a promising therapy strategy for GC.

13.
14.
J Cancer ; 15(5): 1355-1365, 2024.
Article in English | MEDLINE | ID: mdl-38356702

ABSTRACT

PIK3CB, one of catalytic subunits of PI3Ks kinase family, is implicated in several cellular processes such as cell growth, proliferation, mobility and neoplastic transformation. Its abnormal expression has been found in several human cancer types. However, the regulation pattern and function of PIK3CB in gastric cancer (GC) are still unclear. Here, we demonstrated that PIK3CB and SP1 (special protein 1) were both upregulated in GC samples compared to adjacent non-cancerous stomach tissues at mRNA and protein levels. The expression of the two genes also displayed a significant positive correlation in GC samples. Dual-luciferase assays and chromatin immunoprecipitation (ChIP) assays revealed that SP1 could bind to the -771~-605 region of the promoter of PIK3CB and enhance transcription. Furthermore, we discovered that SP1 induced AKT activation through PIK3CB and accelerated GC cell proliferation and migration in a PIK3CB/AKT signaling dependent manner. TGX-221, a PIK3CB-selective inhibitor, which can block this signaling transduction pathway, was found to inhibit the growth of GC cells and induce apoptosis in vitro, implying that it may act as a potential development agent for GC. These collective findings provide a new insight into PI3K/AKT signaling that SP1 may function as an upstream factor on PI3K, forming a new signaling axis to promote the progression of GC or other malignancies.

15.
Ther Adv Med Oncol ; 16: 17588359231225035, 2024.
Article in English | MEDLINE | ID: mdl-38293276

ABSTRACT

Background: Different RAS/BRAF allele mutations imply distinct biological properties in various solid tumors. Recently, several studies have focused on the predictive and prognostic roles of various RAS/BRAF allele mutations in colorectal cancer (CRC) but the results remain controversial. Methods: Between March 2017 and September 2022, the patients diagnosed as stages I-IV CRC with detailed medical records including next-generation sequencing (NGS) data and clinicopathological follow-up information available at our center were enrolled. Survival data were estimated using the Kaplan-Meier method, and the difference was tested in a log-rank test. Multivariate tests were carried out using Cox models. Results: A total of 1029 CRC patients were included, and the incidence of RAS/BRAF mutation was 58.4%. The hypermutated cohort was defined as patients with microsatellite instability-H or POLE/D mutation. In the non-hypermutational cohort, only KRAS G13D mutation was associated with a higher incidence and inferior disease-free survival in patients with stage I-III CRC. In the cohort of patients with non-hypermutated metastatic colorectal cancer (mCRC), we assessed the risk of various RAS/BRAF allele mutations and subsequently reclassified patients into four groups based on first-line median progression-free survival: wild type (group 1), low-risk RAS/BRAF mutation (group 2, RAS/BRAF mutations other than KRAS G13D/G12V/G12C or BRAF V600E), high-risk RAS mutation (group 3, KRAS G13D/G12V/G12C), and BRAF V600E mutation (group 4). mCRC patients with high-risk RAS mutation could significantly benefit from intensive triplet chemotherapy (hazard ratio, 2.54; 95% confidence interval, 1.36-5.12; p = 0.0091). Conclusion: In the non-hypermutated CRC cohort, the prognostic risk of various RAS/BRAF allele mutations varied between local and metastatic CRC. KRAS G13D mutation tended to be the only prognostic marker for stages I-III CRC; however, KRAS G13D/G12V/G12C mutations collectively defined a high-risk subgroup of mCRC patients with poor prognosis, who would benefit from intensive triplet chemotherapy.

16.
Circulation ; 149(13): 1004-1015, 2024 03 26.
Article in English | MEDLINE | ID: mdl-37886839

ABSTRACT

BACKGROUND: The adult mammalian heart is incapable of regeneration, whereas a transient regenerative capacity is maintained in the neonatal heart, primarily through the proliferation of preexisting cardiomyocytes. Neonatal heart regeneration after myocardial injury is accompanied by an expansion of cardiac fibroblasts and compositional changes in the extracellular matrix. Whether and how these changes influence cardiomyocyte proliferation and heart regeneration remains to be investigated. METHODS: We used apical resection and myocardial infarction surgical models in neonatal and adult mice to investigate extracellular matrix components involved in heart regeneration after injury. Single-cell RNA sequencing and liquid chromatography-mass spectrometry analyses were used for versican identification. Cardiac fibroblast-specific Vcan deletion was achieved using the mouse strains Col1a2-2A-CreER and Vcanfl/fl. Molecular signaling pathways related to the effects of versican were assessed through Western blot, immunostaining, and quantitative reverse transcription polymerase chain reaction. Cardiac fibrosis and heart function were evaluated by Masson trichrome staining and echocardiography, respectively. RESULTS: Versican, a cardiac fibroblast-derived extracellular matrix component, was upregulated after neonatal myocardial injury and promoted cardiomyocyte proliferation. Conditional knockout of Vcan in cardiac fibroblasts decreased cardiomyocyte proliferation and impaired neonatal heart regeneration. In adult mice, intramyocardial injection of versican after myocardial infarction enhanced cardiomyocyte proliferation, reduced fibrosis, and improved cardiac function. Furthermore, versican augmented the proliferation of human induced pluripotent stem cell-derived cardiomyocytes. Mechanistically, versican activated integrin ß1 and downstream signaling molecules, including ERK1/2 and Akt, thereby promoting cardiomyocyte proliferation and cardiac repair. CONCLUSIONS: Our study identifies versican as a cardiac fibroblast-derived pro-proliferative proteoglycan and clarifies the role of versican in promoting adult cardiac repair. These findings highlight its potential as a therapeutic factor for ischemic heart diseases.


Subject(s)
Heart Injuries , Induced Pluripotent Stem Cells , Myocardial Infarction , Animals , Humans , Mice , Animals, Newborn , Cell Proliferation , Heart , Heart Injuries/metabolism , Induced Pluripotent Stem Cells/metabolism , Mammals , Myocytes, Cardiac/metabolism , Regeneration , Versicans/genetics , Versicans/metabolism
17.
Mol Reprod Dev ; 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38054257

ABSTRACT

Polycystic ovary syndrome (PCOS) is an endocrine disorder, affecting women of child-bearing age, and the incidence rate is growing and assuming epidemic proportions. The etiology of PCOS remains unknown and there is no cure. Some animal models for PCOS have been established which have enhanced our understanding of the underlying mechanisms, but omics data for revealing PCOS pathogenesis and for drug discovery are still lacking. In the present study, proteomics analysis was used to construct a protein profile of the ovaries in a PCOS mouse model. The result showed a clear difference in protein profile between the PCOS and control group, with 495 upregulated proteins and 404 downregulated proteins in the PCOS group. The GO term and KEGG pathway analyses of differentially expressed proteins mainly showed involvement in lipid metabolism, oxidative stress, and immune response, which are consistent with pathological characteristics of PCOS in terms of abnormal metabolism, endocrine disorders, chronic inflammation and imbalance between oxidant and antioxidant levels. Also, we found that inflammatory responses were activated in the PCOS ovarium, while lipid biosynthetic process peroxisome, and bile secretion were inhibited. In addition, we found some alteration in unexpected pathways, such as glyoxylate and dicarboxylate metabolism, which should be investigated. The present study makes an important contribution to the current lack of PCOS ovarian proteomic data and provides an important reference for research and development of effective drugs and treatments for PCOS.

18.
BMC Cancer ; 23(1): 1105, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37957631

ABSTRACT

BACKGROUND: Ubiquitin-specific protease 32 (USP32) is a highly conserved gene that promotes cancer progression. However, its role in hepatocellular carcinoma (HCC) is not well understood. The aim of this project is to explore the clinical significance and functions of USP32 in HCC. METHODS: The expression of USP32 in HCC was evaluated using data from TCGA, GEO, TISCH, tissue microarray, and human HCC samples from our hospital. Survival analysis, PPI analysis and GSEA analysis were performed to evaluate USP32-related clinical significance, key molecules and enrichment pathways. Using the ssGSEA algorithm and TIMER, we investigated the relationships between USP32 and immune infiltrates in the TME. Univariate and multivariate Cox regression analyses were then used to identify key USP32-related immunomodulators and constructed a USP32-related immune prognostic model. Finally, CCK8, transwell and colony formation assays of HCC cells were performed and an HCC nude mouse model was established to verify the oncogenic role of USP32. RESULTS: USP32 is overexpressed in HCC and its expression is an independent predictive factor for outcomes of HCC patients. USP32 is associated with pathways related to cell behaviors and cancer signaling, and its expression is significantly correlated with the infiltration of immune cells in the TME. We also successfully constructed a USP32-related immune prognostic model using 5 genes. Wet experiments confirmed that knockdown of USP32 could repress the proliferation, colony formation and migration of HCC cells in vitro and inhibit tumor growth in vivo. CONCLUSION: USP32 is highly expressed in HCC and closely correlates with the TME of HCC. It is a potential target for improving the efficacy of chemotherapy and developing new strategies for targeted therapy and immunotherapy in HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Ubiquitin Thiolesterase , Animals , Humans , Mice , Adjuvants, Immunologic , Algorithms , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Neoplastic Processes , Ubiquitin Thiolesterase/genetics
19.
Front Optoelectron ; 16(1): 38, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38010425

ABSTRACT

Nonreciprocal interlayer coupling is difficult to practically implement in bilayer non-Hermitian topological photonic systems. In this work, we identify a similarity transformation between the Hamiltonians of systems with nonreciprocal interlayer coupling and on-site gain/loss. The similarity transformation is widely applicable, and we show its application in one- and two-dimensional bilayer topological systems as examples. The bilayer non-Hermitian system with nonreciprocal interlayer coupling, whose topological number can be defined using the gauge-smoothed Wilson loop, is topologically equivalent to the bilayer system with on-site gain/loss. We also show that the topological number of bilayer non-Hermitian C6v-typed domain-induced topological interface states can be defined in the same way as in the case of the bilayer non-Hermitian Su-Schrieffer-Heeger model. Our results show the relations between two microscopic provenances of the non-Hermiticity and provide a universal and convenient scheme for constructing and studying nonreciprocal interlayer coupling in bilayer non-Hermitian topological systems. This scheme is useful for observation of non-Hermitian skin effect in three-dimensional systems.

20.
Genes Nutr ; 18(1): 12, 2023 Aug 19.
Article in English | MEDLINE | ID: mdl-37598138

ABSTRACT

Paternal high-fat diet (HFD) can alter the epigenetics of sperm DNA, resulting in the transmission of obesity-related traits to the offspring. Previous studies have mainly focused on the HFD-induced changes in DNA methylation of imprinted genes, overlooking the potential involvement of non-imprinted genes in this process. SETD2, an important epigenetically-regulated gene known for its response to environmental stress, remains poorly understood in the context of high-fat diet-induced epigenetic changes. Here we examined the effect of obesity from a HFD on paternal SETD2 expression and methylation in sperm, and embryos at the blastocyst stage and during subsequent development, to determine the alteration of SETD2 in paternal intergenerational and transgenerational inheritance. The result showed that mice fed with HFD for two months had significantly increased SETD2 expression in testis and sperm. The paternal HFD significantly altered the DNA methylation level with 20 of the 26 CpG sites being changed in sperm from F0 mice. Paternal high-fat diet increased apoptotic index and decreased total cell number of blastocysts, which were closely correlated with DNA methylation level of sperm. Out of the 26 CpG sites, we also found three CpG sites that were significantly changed in the sperm from F1 mice, which meant that the methylation changes at these three CpG sites were maintained.In conclusion, we found that paternal exposure to an HFD disrupted the methylation pattern of SETD2 in the sperm of F0 mice and resulted in perturbed SETD2 expression. Furthermore, the paternal high-fat diet influenced embryo apoptosis and development, possibly through the SETD2 pathway. The altered methylation of SETD2 in sperm induced by paternal HFD partially persisted in the sperm of the F1 generation, highlighting the role of SETD2 as an epigenetic carrier for paternal intergenerational and transgenerational inheritance.

SELECTION OF CITATIONS
SEARCH DETAIL