Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters








Database
Language
Publication year range
1.
ACS Sens ; 8(10): 3862-3872, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37752695

ABSTRACT

In this work, a new type, highly sensitive, and reusable nanoplastics (NPs) microwave detection method is proposed, which can be used to rapidly analyze NPs with different surface charges and sizes. The effective dielectric constant of NPs varies according to the different concentrations, particle sizes, and surface charges of NPs in aqueous solution. The feasibility of the microwave method for differential-charged NPs detection is verified using a complementary split ring resonator sensor manufactured on a cost-effective printed circuit board, which shows a high sensitivity only for positively charged NPs (PS-NH2) detection. To achieve microwave detection of both positively and negatively charged NPs (PS-SO3H), a microscale spiral-coupled resonator sensing chip is manufactured through integrated passive technology, which demonstrates extremely low detection limits and high sensitivity for both PS-NH2 and PS-SO3H, with different concentrations, particle sizes, and charges. In addition, for NPs solution doped with methyl orange, the device can still perform stable measurements, overcoming the inability of traditional NPs molecular element determination and optical detection methods to detect NPs aqueous solution with organic matter doping and color presence. The proposed microwave detection method could also be extended to sensing detection for detecting other hazardous environmental substances.


Subject(s)
Microplastics , Microwaves
2.
Biosens Bioelectron ; 241: 115686, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37729810

ABSTRACT

Micro/nanomotors (MNMs) emerge as a vital candidate for biosensing due to its nano-size structure, high surface-to-area ratio, directional mobility, biocompatibility, and ease of functionalization, therefore being able to detect objects with high efficiency, precision, and selectivity. The driving mode, nanostructure, materials property, preparation technique, and biosensing applications have been thoroughly discussed in publications. To promote the MNMs-based biosensors from in vitro to in vivo, it is necessary to give a comprehensive discussion from the perspective of sensing performances enhancement. However, until now, there is few reviews dedicated to the systematic discussion on the multiple performance enhancement schemes and the current challenges of MNMs-based biosensors. Bearing it in mind and based on our research experience in this field, we summarized the enhancement methods for biosensing properties such as sensitivity, selectivity, detection time, biocompatibility, simplify system operation, and environmental availability. We hope that this review provides the readers with fundamental understanding on performance enhancement schemes for MNMs-based biosensors.

3.
Biosensors (Basel) ; 11(12)2021 Dec 09.
Article in English | MEDLINE | ID: mdl-34940265

ABSTRACT

In this study, we propose a high-performance resonator-based biosensor for mediator-free glucose identification. The biosensor is characterized by an air-bridge capacitor and fabricated via integrated passive device technology on gallium arsenide (GaAs) substrate. The exterior design of the structure is a spiral inductor with the air-bridge providing a sensitive surface, whereas the internal capacitor improves indicator performance. The sensing relies on repolarization and rearrangement of surface molecules, which are excited by the dropped sample at the microcosmic level, and the resonance performance variation corresponds to the difference in glucose concentration at the macroscopic level. The air-bridge capacitor in the modeled RLC circuit serves as a bio-recognition element to glucose concentration (εglucoseC0), generating resonant frequency shifts at 0.874 GHz and 1.244 GHz for concentrations of 25 mg/dL and 300 mg/dL compared to DI water, respectively. The proposed biosensor exhibits excellent sensitivity at 1.38 MHz per mg/dL with a wide detection range for glucose concentrations of 25-300 mg/dL and a low detection limit of 24.59 mg/dL. Additionally, the frequency shift and concentration are highly linear with a coefficient of determination of 0.98823. The response time is less than 3 s. We performed multiple experiments to verify that the surface morphology reveals no deterioration and chemical binding, thus validating the reusability and reliability of the proposed biosensor.


Subject(s)
Biosensing Techniques , Glucose , Microwaves , Reproducibility of Results , Technology
4.
J Neural Eng ; 17(3): 036014, 2020 06 22.
Article in English | MEDLINE | ID: mdl-32380482

ABSTRACT

OBJECTIVE: Vagus nerve stimulation (VNS) is a nonpharmacologic therapeutic option for patients who have pharmaco-resistant Dravet syndrome (DS). Plentiful efforts have been made for delivering VNS to DS patients, but its effectiveness still requires further verification. We investigated the effectiveness of the VNS treatment of DS patients using brain connectivity analysis with electroencephalography (EEG). APPROACH: Twenty pharmaco-resistant DS patients were selected to undergo VNS implantation and classified into responder and non-responder groups after 24 months post-VNS. The effect of VNS between 6 months pre- and 6, 12, and 24 months post-VNS in all patients, responders, and non-responders on four different frequency categories of four brain parameters were compared using resting-state EEG. MAIN RESULTS: In alpha and beta bands, all patients showed positive results for characteristic path length (CPL), global efficiency (GE), and transitivity after VNS treatment, and changes in betweenness centrality (BC) were not significant. The difference in transitivity between responders and non-responders is more pronounced than those in CPL and GE are, in both the alpha (p < 0.015) and beta (p < 0.001) bands. There was an obvious change in BC, especially in the alpha band, as the hubs tended to move from frontal lobe to parietal lobe for responders; however, there was no change for the non-responders. SIGNIFICANCE: We investigated the alteration in brain connectivity of DS patients in alpha and beta bands during a long-term follow-up and found the responders have a decreased transitivity after the VNS treatment. Moreover, the hubs with high values in the alpha band tended to move from frontal lobe to parietal lobe for responders after VNS treatment.


Subject(s)
Epilepsies, Myoclonic , Vagus Nerve Stimulation , Brain/diagnostic imaging , Electroencephalography , Epilepsies, Myoclonic/diagnosis , Epilepsies, Myoclonic/therapy , Humans , Treatment Outcome , Vagus Nerve
5.
Sci Rep ; 9(1): 680, 2019 Jan 24.
Article in English | MEDLINE | ID: mdl-30679820

ABSTRACT

Inter-digital capacitors (IDCs) with aerosol-deposition (AD) high-k dielectric layer were compared via simulation and measurements of bare IDCs and AD IDCs at room temperature and subjected to a post-annealing process for realizing capacitive super-sensing applications. IDCs with thin AD films can provide higher capacitive intensity and improvements for other dielectric performances. Therefore, IDC patterns with AD high-k dielectric layers were fabricated by varying the finger widths and gap. Moreover, we analyzed the layer microstructure design patterns using simulations and experiments with AD BaTiO3 as-deposited IDCs and IDCs subjected to annealing at 500 °C. These three different IDCs were measured using an impedance analyzer; furthermore, the AD BaTiO3 films were evaluated using X-ray diffraction, atomic force microscopy, and traveling electron microscopy. The results for the IDCs with the AD BaTiO3 film show the highest capacitance when compared with other thin layer capacitors, which is expected to be useful in realizing super-sensing applications in the future.

6.
Micromachines (Basel) ; 9(9)2018 Sep 13.
Article in English | MEDLINE | ID: mdl-30424396

ABSTRACT

This paper reports on the use of gallium arsenide-based integrated passive device technology for the implementation of a miniaturized bandpass filter that incorporates an intertwined circle-shaped spiral inductor and an integrated center-located capacitor. Air-bridge structures were introduced to the outer inductor and inner capacitor for the purpose of space-saving, thereby yielding a filter with an overall chip area of 1178 µm × 970 µm. Thus, not only is the chip area minimized, but the magnitude of return loss is also improved as a result of selective variation of bridge capacitance. The proposed device possesses a single passband with a central frequency of 1.71 GHz (return loss: 32.1 dB), and a wide fractional bandwidth (FBW) of 66.63% (insertion loss: 0.50 dB). One transmission zero with an amplitude of 43.42 dB was obtained on the right side of the passband at 4.48 GHz. Owing to its miniaturized chip size, wide FBW, good out-band suppression, and ability to yield high-quality signals, the fabricated bandpass filter can be implemented in various L-band applications such as mobile services, satellite navigation, telecommunications, and aircraft surveillance.

7.
Sci Rep ; 8(1): 3414, 2018 02 21.
Article in English | MEDLINE | ID: mdl-29467376

ABSTRACT

Corpus callosotomy (CC) is an effective palliative surgical treatment for patients with Lennox-Gastaut Syndrome (LGS). However, research on the long-term functional effects of CC is sparse. We aimed to investigate these effects and their associated clinical conditions over the two years after CC. Long-term clinical EEG recordings of 30 patients with LGS who had good and bad seizure outcome after CC were collected and retrospectively studied. It was found that CC caused brain network 'hubs' to shift from paramedian to lateral regions in the good-recovery group, which reorganized the brain network into a more homogeneous state. We also found increased local clustering coefficients in patients with bad outcomes and decreases, implying enhanced network integration, in patients with good outcomes. The small worldness of brain networks in patients with good outcomes increased in the two years after CC, whereas it decreased in patients with bad outcomes. The covariation of small-worldness with the rate of reduction in seizure frequency suggests that this can be used as an indicator of CC outcome. Local and global network changes during the long-term state might be associated with the postoperative recovery process and could serve as indicators for CC outcome and long-term LGS recovery.


Subject(s)
Corpus Callosum/physiology , Corpus Callosum/surgery , Lennox Gastaut Syndrome/physiopathology , Lennox Gastaut Syndrome/surgery , Child , Child, Preschool , Female , Humans , Infant , Male , Retrospective Studies , Seizures/physiopathology
8.
ACS Appl Mater Interfaces ; 10(1): 851-863, 2018 Jan 10.
Article in English | MEDLINE | ID: mdl-29212324

ABSTRACT

Aerosol deposition (AD) is a novel ceramic film preparation technique exhibiting the advantages of room-temperature operation and highly efficient film growth. Despite these advantages, AD has not been used for preparing humidity-sensing films. Herein, room-temperature AD was utilized to deposit BaTiO3 films on a glass substrate with a Pt interdigital capacitor, and their humidity-sensing performances were evaluated in detail, with further optimization performed by postannealing at temperatures of 100, 200, ..., 600 °C. Sensor responses (i.e., capacitance variations) were measured in a humidity chamber for relative humidities (RHs) of 20-90%, with the best sensitivity (461.02) and a balanced performance at both low and high RHs observed for the chip annealed at 500 °C. In addition, its response and recovery were extremely fast, respectively, at 3 and 6 s and it kept a stable recording with the maximum error rate of 0.1% over a 120 h aging test. Compared with other BaTiO3-based humidity sensors, the above chip required less thermal energy for its preparation but featured a more than 2-fold higher sensitivity and a superior detection balance at RHs of 20-90%. Cross-sectional transmission electron microscopy imaging revealed that the prepared film featured a transitional variable-density structure, with moisture absorption and desorption being promoted by a specific capillary structure. Finally, a bilayer physical model was developed to explain the mechanism of enhanced humidity sensitivity by the prepared BaTiO3 film.

9.
Front Neurol ; 8: 456, 2017.
Article in English | MEDLINE | ID: mdl-28928710

ABSTRACT

OBJECTIVES: This study aimed to investigate the functional network effects of corpus callosotomy (CC), a well-recognized palliative surgical therapy for patients with Lennox-Gastaut syndrome (LGS). Specifically, we sought to gain insight into the effects of CC on LGS remission, based on brain networks in LGS by calculating network metrics and evaluating by network measures before and after surgery. METHODS: Electroencephalographic recordings made during preoperative and 3-month postoperative states in 14 patients with LGS who had undergone successful CC were retrospectively analyzed. First, undirected correlation matrices were constituted for the mathematical expression of functional networks. Then, we plotted these networks to analyze the effects of CC on connectivity. In addition, conventional local and global network measures were applied to evaluate differences in network topology between preoperative and postoperative states. RESULTS: In the preoperative state, hubs were mainly distributed around the paramedian regions. After CC, the hubs moved from the paramedian regions to the dual-hemisphere and even the lateral regions. Thus, the general connectivity state became more homogeneous, which was verified by network plots and statistical analysis of local measures. The results of global network measures indicated a decreased clustering coefficient in the delta band, decreased characteristic path length in both the delta and gamma bands, and increased global efficiency in the gamma band. CONCLUSION: Our results showed a consistent variation in the global brain network that converted to a small-world topology with an optimal balance of functional integration and segregation of the network. Such changes were positively correlated with satisfactory surgery results, which could be interpreted as being indicative of LGS recovery process after CC. For patients with refractory LGS along with no focal epileptogenic zone findings, which were not suitable for the resective surgical therapy, our results verified that CC could work as an effective surgical treatment option.

SELECTION OF CITATIONS
SEARCH DETAIL