Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 161
Filter
1.
Heliyon ; 10(16): e35702, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39229545

ABSTRACT

Aims: To investigate the therapeutic effect of acupuncture on acute inflammatory nerve root injury by regulating lymphatic function. Main methods: A mouse model of L5 nerve root compression was used to simulate acute nerve root injury. After modeling, acupuncture treatment was given each day for one week. Pain thresholds were assessed before and after modeling and treatment. Immunofluorescence staining was performed to observe the distribution astrocytes and neurons in the lumbar spinal cord, the innervation rate of neuromuscular junctions (NMJs), lymphatic endothelial cells (LECs) of lumbar aortic lymph nodes, and the percentage of M1 macrophages. The number of each type of immune cells in the lumbar aortic lymph nodes (LALNs) was measured by flow cytometry. Key findings: The model group showed a significant decrease in pain threshold in the affected lower limb, while acupuncture treatment was able to significantly increase it. Acupuncture significantly repaired astrocytes and neurons in the lumbar spinal cord of the compressed segment, increased the innervation rate of nerve endings at NMJs, reduced LECs in the LALNs, reduced the proportion of M1 macrophages in the LALNs, and significantly reduced mononuclear neutrophils and monocytic neutrophils. Significance: Acupuncture can reduce pain, promote nerve repair in mice with acute nerve root injury, and suppress immune responses in lumbar aortic lymph nodes.

2.
RSC Adv ; 14(34): 24712-24724, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39108975

ABSTRACT

Environmental humidity profoundly influences various life activities, especially for plants that depend heavily on optimal humidity for growth. The humidity index is particularly crucial for preserving the functionality of plant leaves, notably in economically valuable plants such as cigar tobacco. This paper introduces a novel dual-layer moisturizing material, a PAS-PDMS composite, based on polyacrylamide/solketal (PAS) hydrogel and polydimethylsiloxane (PDMS). This material features a unique hierarchical water release mechanism. Comprehensive analyses, including thermogravimetric analysis, Fourier-transform infrared spectroscopy, low-field nuclear magnetic resonance, and dynamic water adsorption studies, confirm the water migration and humidity control mechanisms of the PAS-PDMS composite. This smart hydrogel composite regulates microenvironmental humidity bidirectionally. When applied to cigar boxes for storage, it stabilizes internal humidity at approximately 65%, maintaining this level for over 20 days. Furthermore, the PAS-PDMS composite exhibits superior mechanical properties and light transmittance, achieving an exceptional transmittance of 84%. In conclusion, the PAS-PDMS composite offers intelligent humidity control, providing a novel approach to the storage and preservation of cigars.

3.
J Sci Food Agric ; 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39205510

ABSTRACT

BACKGROUND: Accurate identification of meat species is critical to prevent economic fraud and safeguard public health. The use of inappropriate meat sources, such as murine, poses significant health risks because of potential contamination with pathogens and allergens, leading to foodborne illnesses. The present study aimed to develop a novel real-time enzymatic recombinase amplification (ERA) method for the rapid and specific detection of murine DNA in meat products. RESULTS: A novel ERA primer and probe set was designed, targeting a murine-specific single-copy nuclear gene identified through bioinformatics analysis. The assay demonstrates high specificity, showing no amplification in commonly consumed meats, other animals or major crops. Additionally, it exhibits remarkable sensitivity, detecting as few as five copies of murine genomic DNA. For practical application, the ERA method could effectively identify mouse DNA in laboratory-prepared samples at concentrations as low as 0.5% and also quantify samples with mouse DNA content as low as 5%. It also accurately detects the presence of murine-derived ingredients in commercially available meat products. The detection process is straightforward, utilizing a simple isothermal device for incubation, blue light excitation and a smartphone camera for result interpretation. This rapid analysis can be completed within 20 min. CONCLUSION: The newly developed real-time ERA method provides a valuable tool for standardizing meat trade practices, promoting food safety and enhancing consumer confidence in the authenticity of meat products. © 2024 Society of Chemical Industry.

4.
Article in English | MEDLINE | ID: mdl-39209246

ABSTRACT

OBJECTIVE: To investigate the role of the paravertebral lymphatic system in the nucleus pulposus herniation (NPH) resorption and the inflammation regression. DESIGN: Clinical specimens (n = 10) from patients with lumbar disc herniation (LDH) were collected, C57BL/6 (n = 84) and conditional Vegfr3 knockout mice (n = 14) were used. Immunofluorescence staining detected lymphatic vessels (LVs) and NP cells. Near-infrared imaging assessed lymphatic drainage function, and Alcian Blue/Orange determined inflammation. RESULTS: Lymphangiogenesis was observed in the herniated NP of patients with LDH, and the proportion of capillary LVs was higher than that of collecting LVs (mean 68.2% [95% confidence interval: 59.4, 77.1]). In NPH mice, NP cells were detected in paravertebral tissue (38.6 [32.0, 45.2]) and draining lymph nodes (dLN) at 4 h (76.9 [54.9, 98.8]). A significant increase of NP cells in dLNs was observed at 24 h (157.1 [113.7, 200.6]). Most of the herniated NP cells were cleared in paravertebral tissue after 1 week (7.5 [4.4, 10.6]), but disc inflammation peaked at 1 week (19.9% [14.7, 25.1]), along with persistent lymphangiogenesis (9.5 [7.2, 11.8]). However, conditional Vegfr3 knockout mice exhibited impaired lymphangiogenesis (5.7 [4.4, 7.0]) and herniated NP cell clearance (6.1 [1.8, 10.5]) during NPH, leading to exacerbated disc inflammation (23.7% [19.3, 28.2]). CONCLUSION: The paravertebral lymphatic system is involved in the NPH resorption and inflammation regression. Promoting lymphangiogenesis may be a novel strategy for facilitating NPH resorption and inflammation regression in patients with LDH.

5.
Int J Surg ; 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39196877

ABSTRACT

INTRODUCTION: Evidence on the association between early-life malnutrition exposure at different developmental stages and the subsequent risk of osteoporosis and fractures in adulthood remains sparse and equivocal. This study sought to elucidate the relationship between malnutrition exposure in early life and the occurrence of osteoporosis and fractures later in life. METHODS: This research is a cross-sectional analysis carried out within the framework of the China Community-based Cohort of Osteoporosis (CCCO), an ongoing community-based cohort study. Participants were stratified by birthdate into several categories: non-exposed, fetal, early childhood, mid-childhood, late childhood, and adolescence exposure groups. The non-exposure and adolescence exposure groups were consolidated into an "age-matched group" to provide a robust comparative framework for analyzing the probability of developing osteoporosis (defined as a T-score ≤ -2.5 in bone mineral density) and the frequency of self-reported fracture. Multiple logistic regression models were utilized to investigate the association between early-life malnutrition exposure and the risks of osteoporosis and fracture. Additionally, we validated our findings using the China Northwest Cohort (CNC). RESULTS: A total of 12,789 participants were included into the final analysis. After adjusting for various covariates, individuals exposed to malnutrition during their fetal and childhood stages (early, middle, and late) increased the likelihood of developing osteoporosis in adulthood, compared to their age-matched counterparts. In these four groups, the ORs (95% CI) for osteoporosis risk were 1.223 (1.035 to 1.445), 1.208 (1.052 to 1.386), 1.249 (1.097 to 1.421), and 1.101 (1.001 to 1.210), respectively (all P values < 0.05). Specifically, the late childhood exposure group showed a heightened risk of fracture, with an OR (95% CI) of 1.155 (1.033 to 1.291) and a P-value of 0.01127. Stratified analyses further found a significant correlation between early-life exposure to malnutrition and an elevated risk of osteoporosis in participants with lower educational attainment, overweight or obese participants. Additionally, corroborating evidence from the CNC confirmed the influence of malnutrition exposure on osteoporosis risk. CONCLUSIONS: Early-life exposure to malnutrition had a detrimental impact on bone health. Individuals who had experienced malnutrition during fetal and childhood stages (early, middle, and late) exhibited a high susceptibility to osteoporosis in adulthood, compared to age-matched cohorts. This susceptibility was particularly pronounced in women, and individuals who were overweight or obese, or had lower levels of education.

6.
Acta Biomater ; 184: 144-155, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964528

ABSTRACT

The integration of barrier materials with pharmacological therapy is a promising strategy to treat intrauterine adhesions (IUAs). However, most of these materials are surgically implanted in a fixed shape and incongruence with the natural mechanical properties of the uterus, causing poor adaptability and significant discomfort to the patients. Herein, an injectable, biodegradable, and mechanically adaptive hydrogel loaded with platelet-rich plasma (PRP) is created by L­serine and allyl functionalized chitosan (ACS) to achieve efficient, comfortable, and minimally invasive treatment of IUAs. L­serine induces fast gelation and mechanical reinforcement of the hydrogel, while ACS introduces, imparting a good injectability and complaint yet strong feature to the hydrogel. This design enables the hydrogel to adapt to the complex geometry and match the mechanical properties of the uterine. Moreover, the hydrogel exhibits proper degradability, sustained growth factors (GFs) of PRP release ability, and good biocompatibility. Consequently, the hydrogel shows promising therapeutic efficacy by reducing collagen fiber deposition and facilitating endometrium cell proliferation, thereby restoring the fertility function of the uterus in an IUAs model of rats. Accordingly, the combination of L­serine and ACS-induced hydrogel with such advantages holds great potential for treating IUAs. STATEMENT OF SIGNIFICANCE: This research introduces a breakthrough in the treatment of intrauterine adhesions (IUAs) with an injectable, biodegradable and mechanically adaptive hydrogel using L­serine and allyl functionalized chitosan (ACS). Unlike traditional surgical treatments, this hydrogel uniquely conforms to the uterus's geometry and mechanical properties, offering a minimally invasive, comfortable, and more effective solution. The hydrogel is designed to release growth factors from platelet-rich plasma (PRP) sustainably, promoting tissue regeneration by enhancing collagen fiber deposition and endometrium cell proliferation. Demonstrated efficacy in a rat model of IUAs indicates its great potential to significantly improve fertility restoration treatments. This advancement represents a significant leap in reproductive medicine, promising to transform IUAs treatment with its innovative approach to achieving efficient, comfortable, and minimally invasive therapy.


Subject(s)
Chitosan , Hydrogels , Platelet-Rich Plasma , Rats, Sprague-Dawley , Serine , Female , Animals , Chitosan/chemistry , Chitosan/pharmacology , Tissue Adhesions/pathology , Hydrogels/chemistry , Hydrogels/pharmacology , Serine/chemistry , Serine/pharmacology , Rats , Injections , Uterus/drug effects , Uterus/pathology , Uterine Diseases/pathology , Uterine Diseases/therapy
7.
Food Chem ; 458: 140233, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38964093

ABSTRACT

To analyze the effect of various drying treatments (microwave drying (MD), hot air drying (HAD), vacuum drying (VD), and vacuum freeze drying (VFD)) on taste compounds in Penaeus vannamei, relevant indicators such as free amino acids, 5'-nucleotides, and organic acids were performed. Multidimensional infrared spectroscopy (MM-IR) results found that there were notable variations in taste properties of P. vannamei. There were 18 autocorrelation peaks in 3400-900 cm-1 were screened using second-derivative infrared spectroscopy (SD-IR) and two-dimensional correlation infrared spectroscopy (2DCOS-IR). Variations in functional groups were the major contributors to taste profiles. The TAV of glutamic acid (Glu), guanine (GMP), and inosinemonphosphate (IMP) were greater than one and had notable impacts on taste profiles. VD had the highest equivalent umami value, followed by VFD, HAD, and MD. This study may provide a theoretical guide for the production of dried P. vannamei products on an industrial scale.


Subject(s)
Penaeidae , Taste , Animals , Penaeidae/chemistry , Spectrophotometry, Infrared , Desiccation/methods , Amino Acids/chemistry , Food Handling/instrumentation , Humans
8.
Chin Med ; 19(1): 96, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978120

ABSTRACT

The aim of this study was to develop a three-dimensional (3D) cell model in order to evaluate the effectiveness of a traditional Chinese medicine decoction in the treatment of arthritis. Chondrocytes (ATDC5) and osteoblasts (MC3T3-E1) were 3D printed separately using methacryloyl gelatin (GelMA) hydrogel bioinks to mimic the natural 3D cell environment. Both cell types showed good biocompatibility in GelMA. Lipopolysaccharide (LPS) was added to the cell models to create inflammation models, which resulted in increased expression of inflammatory factors IL-1ß, TNF-α, iNOS, and IL-6, and decreased expression of cell functional genes such as Collagen II (COLII), transcription factor SOX-9 (Sox9), Aggrecan, alkaline phosphatase (ALP), RUNX family transcription factor 2 (Runx2), Collagen I (COLI), Osteopontin (OPN), and bone morphogenetic protein-2 (BMP-2). The created inflammation model was then used to evaluate the effectiveness of Dangguiniantongtang (DGNT) decoctions. The results showed that DGNT reduced the expression of inflammatory factors and increased the expression of functional genes in the cell model. In summary, this study established a 3D cell model to assess the effectiveness of traditional Chinese medicine (TCM) decoctions, characterized the gene expression profile of the inflammatory state model, and provided a practical reference for future research on TCM efficacy evaluation for arthritis treatment.

9.
Int J Biol Macromol ; 273(Pt 2): 133061, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38866272

ABSTRACT

Secondary lymphedema is a chronic and incurable disease lacking satisfactory therapeutic drugs. It primarily results from lymphatic vessel dysfunction resulting from factors such as tumor-related surgery, injury, or infection. Promoting lymphangiogenesis and lymphatic vessel remodeling is crucial for restoring tissue fluid drainage and treating secondary lymphedema. In this study, we discovered that the oral administration of a type-II arabinogalactan (CAPW-1, molecular weight: 64 kDa) significantly promoted lymphangiogenesis and alleviated edema in mice with secondary lymphedema. Notably, the tail diameter of the CAPW-1200 group considerably decreased in comparison to that of the lymphedema group, with an average diameter difference reaching 0.98 mm on day 14. CAPW-1 treatment also reduced the average thickness of the subcutaneous area in the CAPW-1200 group to 0.37 mm (compared with 0.73 mm in the lymphedema group). It also facilitated the return of injected indocyanine green (ICG) from the tail tip to the sciatic lymph nodes, indicating that CAPW-1 promoted lymphatic vessel remodeling at the injury site. In addition, CAPW-1 enhanced the proliferation and migration of lymphatic endothelial cells. This phenomenon was associated with the activation of the toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signaling pathway, thereby promoting the expression of vascular endothelial growth factor-C (VEGF-C), which can be abolished using a TLR4 antagonist. Despite these findings, CAPW-1 did not alleviate the symptoms of lymphedema or restore lymphatic drainage in VEGFR3flox/flox/Prox1-CreERT2 mice. In summary, CAPW-1 alleviates secondary lymphedema by promoting lymphangiogenesis and lymphatic vessel remodeling through the activation of the TLR4/NF-κB/VEGF-C signaling pathway, indicating its potential as a therapeutic lymphangiogenesis agent for patients with secondary lymphedema.


Subject(s)
Galactans , Lymphangiogenesis , Lymphatic Vessels , Lymphedema , Toll-Like Receptor 4 , Animals , Lymphangiogenesis/drug effects , Mice , Lymphedema/drug therapy , Lymphedema/metabolism , Lymphedema/etiology , Lymphatic Vessels/drug effects , Lymphatic Vessels/metabolism , Galactans/pharmacology , Galactans/chemistry , Toll-Like Receptor 4/metabolism , Signal Transduction/drug effects , Cell Proliferation/drug effects , NF-kappa B/metabolism , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Cell Movement/drug effects , Disease Models, Animal , Male
10.
J Org Chem ; 89(12): 8537-8545, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38861493

ABSTRACT

The current methods for synthesizing acylhydrazones are limited by their multistep processes, narrow substrate scope, low selectivities, and poor yields. Herein, a fundamentally novel approach to bioactive acylhydrazones was developed based on the palladium-catalyzed multicomponent tandem condensation carbonylation of halides with aldehydes and hydrazines. This method provides a useful and efficient strategy for generating grams of various acylhydrazones in a one-pot manner. Mechanistic studies provided evidence of facile carbonylation of halides with the weak nucleophile hydrazones facilitated by a base.

11.
HGG Adv ; 5(3): 100310, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38773771

ABSTRACT

Non-protein-coding genetic variants are a major driver of the genetic risk for human disease; however, identifying which non-coding variants contribute to diseases and their mechanisms remains challenging. In silico variant prioritization methods quantify a variant's severity, but for most methods, the specific phenotype and disease context of the prediction remain poorly defined. For example, many commonly used methods provide a single, organism-wide score for each variant, while other methods summarize a variant's impact in certain tissues and/or cell types. Here, we propose a complementary disease-specific variant prioritization scheme, which is motivated by the observation that variants contributing to disease often operate through specific biological mechanisms. We combine tissue/cell-type-specific variant scores (e.g., GenoSkyline, FitCons2, DNA accessibility) into disease-specific scores with a logistic regression approach and apply it to ∼25,000 non-coding variants spanning 111 diseases. We show that this disease-specific aggregation significantly improves the association of common non-coding genetic variants with disease (average precision: 0.151, baseline = 0.09), compared with organism-wide scores (GenoCanyon, LINSIGHT, GWAVA, Eigen, CADD; average precision: 0.129, baseline = 0.09). Further on, disease similarities based on data-driven aggregation weights highlight meaningful disease groups, and it provides information about tissues and cell types that drive these similarities. We also show that so-learned similarities are complementary to genetic similarities as quantified by genetic correlation. Overall, our approach demonstrates the strengths of disease-specific variant prioritization, leads to improvement in non-coding variant prioritization, and enables interpretable models that link variants to disease via specific tissues and/or cell types.


Subject(s)
Chromatin , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Chromatin/genetics , Chromatin/metabolism , Genetic Variation/genetics , Polymorphism, Single Nucleotide , Computational Biology/methods , Algorithms
12.
Biochem Biophys Res Commun ; 723: 150179, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-38820623

ABSTRACT

Lymphedema, a prevalent, multifaceted, and chronic ailment, is mainly managed through physical manipulation and suffers from a lack of specific pharmacological treatments. Secondary lymphedema is mainly caused by impaired lymphatic drainage. Therapeutic lymphangiogenesis is a promising strategy in the treatment of lymphedema. Andrographolide, a natural product from Andrographis paniculata, is unknown whether andrographolide promotes lymphangiogenesis to improve secondary lymphedema. By using the murine tail lymphedema model, we demonstrated that andrographolide can reduce the thickness of subcutaneous tissue in the mice's tail and enhance lymphatic drainage. Moreover, immunofluorescence staining showed that the number of capillary lymphatic vessels in the ANDRO25 group was significantly more than that in the ANDRO50 and Model groups. Near-infrared lymphography images showed that highlighted sciatic lymph nodes could be seen in the ANDRO25 and ANDRO50 groups. In vitro, andrographolide could promote the proliferation and migration of LEC. In conclusion, andrographolide enhanced the recovery of lymphatic vessels, and promoted lymphatic drainage in the murine tail lymphedema model by promoting the proliferation of lymphatic endothelial cells, thereby reducing the symptoms of lymphedema. This suggested andrographolide may be used as a potential therapeutic drug or medical food ingredient to help patients with secondary lymphedema.


Subject(s)
Diterpenes , Lymphangiogenesis , Lymphatic Vessels , Lymphedema , Diterpenes/pharmacology , Animals , Lymphangiogenesis/drug effects , Lymphedema/drug therapy , Lymphedema/pathology , Lymphatic Vessels/drug effects , Lymphatic Vessels/pathology , Mice , Cell Proliferation/drug effects , Cell Movement/drug effects , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelial Cells/pathology , Disease Models, Animal , Mice, Inbred C57BL , Humans
13.
Chin Herb Med ; 16(2): 274-281, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38706818

ABSTRACT

Objective: Rheumatoid arthritis (RA) is a chronic inflammatory and destructive arthritis, characterized by inflammatory infiltration and bone destruction. Huangqi Guizhi Wuwu Decoction (HGWD) is traditional Chinese medicine, which has been applied in the treatment of RA in clinical. The aim of this study was to investigate the therapeutic effect of HGWD on collagen-induced arthritis (CIA) mouse model. Methods: DBA/1J female mice were used to establish the collagen-induced arthritis (CIA) model. HGWD was administered intragastrically once a day for four weeks starting on the 22nd day after the first immunization. The body weight, hind paw thickness and clinical score were measured every five days. Gait analysis, histopathological staining, enzyme-linked immunosorbent assay (ELISA), ultrasound imaging and micro-computed tomography imaging were performed to determine the effects of HGWD treatment on inflammation and bone structure in this model. Moreover, Real-time PCR and Western blot analysis were used to detect inflammatory factors mRNA and protein levels after HGWD intervention in RAW 264.7 cells. Results: HGWD attenuated symptoms of arthritis, suppressed inflammatory synovium area and the serum levels of inflammatory factors, inhibited joint space enlargement in the knee and ankle joints, reduced numbers of osteoclasts, protected bone destruction, as well as improved motor function. HGWD decreased the expression of mRNA for inflammatory factors and the protein expression levels of p-NF-кB and IL-17. Conclusion: These results suggested that HGWD suppresses inflammation, attenuates bone erosion and maintains motor function in collagen-induced arthritis mice.

14.
Small ; : e2401308, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773889

ABSTRACT

Incorporating ultralow loading of nanoparticles into polymers has realized increases in dielectric constant and breakdown strength for excellent energy storage. However, there are still a series of tough issues to be dealt with, such as organic solvent uses, which face enormous challenges in scalable preparation. Here, a new strategy of dual in situ synthesis is proposed, namely polymerization of polyethylene terephthalate (PET) synchronizes with growth of calcium borate nanoparticles, making polyester nanocomposites from monomers directly. Importantly, this route is free of organic solvents and surface modification of nanoparticles, which is readily accessible to scalable synthesis of polyester nanocomposites. Meanwhile, uniform dispersion of as ultralow as 0.1 wt% nanoparticles and intense bonding at interfaces have been observed. Furthermore, the PET-based nanocomposite displays obvious increases in both dielectric constant and breakdown strength as compared to the neat PET. Its maximum discharged energy density reaches 15 J cm-3 at 690 MV m-1 and power density attains 218 MW cm-3 under 150 Ω resistance at 300 MV m-1, which is far superior to the current dielectric polymers that can be produced at large scales. This work presents a scalable, safe, low-cost, and environment-friendly route toward polymer nanocomposites with superior capacitive performance.

15.
Cell Discov ; 10(1): 28, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38472169

ABSTRACT

Due to a rapidly aging global population, osteoporosis and the associated risk of bone fractures have become a wide-spread public health problem. However, osteoporosis is very heterogeneous, and the existing standard diagnostic measure is not sufficient to accurately identify all patients at risk of osteoporotic fractures and to guide therapy. Here, we constructed the first prospective multi-omics atlas of the largest osteoporosis cohort to date (longitudinal data from 366 participants at three time points), and also implemented an explainable data-intensive analysis framework (DLSF: Deep Latent Space Fusion) for an omnigenic model based on a multi-modal approach that can capture the multi-modal molecular signatures (M3S) as explicit functional representations of hidden genotypes. Accordingly, through DLSF, we identified two subtypes of the osteoporosis population in Chinese individuals with corresponding molecular phenotypes, i.e., clinical intervention relevant subtypes (CISs), in which bone mineral density benefits response to calcium supplements in 2-year follow-up samples. Many snpGenes associated with these molecular phenotypes reveal diverse candidate biological mechanisms underlying osteoporosis, with xQTL preferences of osteoporosis and its subtypes indicating an omnigenic effect on different biological domains. Finally, these two subtypes were found to have different relevance to prior fracture and different fracture risk according to 4-year follow-up data. Thus, in clinical application, M3S could help us further develop improved diagnostic and treatment strategies for osteoporosis and identify a new composite index for fracture prediction, which were remarkably validated in an independent cohort (166 participants).

16.
J Orthop Translat ; 45: 66-74, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38511124

ABSTRACT

Background: The musculoskeletal system contains an extensive network of lymphatic vessels. Decreased lymph flow of the draining collecting lymphatics usually occurs in clinic after traumatic fractures. However, whether defects in lymphatic drainage can affect fracture healing is unclear. Methods: To investigate the effect of lymphatic dysfunction on fracture healing, we used a selective VEGFR3 tyrosine kinase inhibitor to treat tibial fractured mice for 5 weeks versus a vehicle-treated control. To ensure successfully establishing deceased lymphatic drainage model for fractured mice, we measured lymphatic clearance by near infrared indocyanine green lymphatic imaging (NIR-ICG) and the volume of the draining popliteal lymph nodes (PLNs) by ultrasound at the whole phases of fracture healing. In addition, hindlimb edema from day 0 to day 7 post-fracture, pain sensation by Hargreaves test at day 1 post-fracture, bone histomorphometry by micro-CT and callus composition by Alcian Blue-Hematoxylin/Orange G staining at day 14 post-fracture, and bone quality by biomechanical testing at day 35 post-fracture were applied to evaluate fracture healing. To promote fracture healing via increasing lymphatic drainage, we then treated fractured mice with anti-mouse podoplanin (PDPN) neutralizing antibody or isotype IgG antibody for 1 week to observe lymphatic drainage function and assess bone repair as methods described above. Results: Compared to vehicle-treated group, SAR-treatment group significantly decreased lymphatic clearance and the volume of draining PLNs. SAR-treatment group significantly increased soft tissue swelling, and reduced bone volume (BV)/tissue volume (TV), trabecular number (Tb.N), woven bone and biomechanical properties of fracture callus. In addition, anti-PDPN treated group significantly reduced the number of CD41+ platelets in PLNs and increased the number of pulsatile lymphatic vessels, lymphatic clearance and the volume of PLNs. Moreover, anti-PDPN treated group significantly reduced hindlimb edema and pain sensation and increased BV/TV, trabecular number (Tb.Th), woven bone and biomechanical properties of fracture callus. Conclusions: Inhibition of proper lymphatic drainage function delayed fracture healing. Use of a anti-PDPN neutralizing antibody reduced lymphatic platelet thrombosis (LPT), increased lymphatic drainage and improved fracture healing. The translational potential of this article: (1) We demonstrated lymphatic drainage function is crucial for fracture healing. (2) To unblock the lymphatic drainage and prevent the risk of bleeding and mortality by blood thinner, we demonstrated PDPN neutralizing antibody is a novel and safe way forward in the treatment of bone fracture healing by eliminating LPT and increasing lymphatic drainage.

17.
Mar Drugs ; 22(2)2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38393055

ABSTRACT

The effects of ultrasonic power (0, 150, 300, 450, and 600 W) on the extraction yield and the structure and rheological properties of pepsin-soluble collagen (PSC) from albacore skin were investigated. Compared with the conventional pepsin extraction method, ultrasonic treatment (UPSC) significantly increased the extraction yield of collagen from albacore skin, with a maximum increase of 8.56%. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis revealed that peptides of low molecular weight were produced when the ultrasonic power exceeded 300 W. Meanwhile, secondary structure, tertiary structure, and X-ray diffraction analyses showed that the original triple helix structure of collagen was intact after the ultrasonic treatment. The collagen solutions extracted under different ultrasonic powers had significant effects on the dynamic frequency sweep, but a steady shear test suggested that the collagen extracted at 150 W had the best viscosity. These results indicate that an ultrasonic power between 150 and 300 W can improve not only the extraction yield of natural collagen, but also the rheological properties of the collagen solution without compromising the triple helix structure.


Subject(s)
Perciformes , Ultrasonics , Animals , Pepsin A/chemistry , Fish Proteins/chemistry , Collagen/chemistry , Skin
18.
Small ; 20(28): e2311731, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38321844

ABSTRACT

Wilderness adventure favored by many enthusiasts often endanger lives due to lacking freshwater or drinking contaminated water. Therefore, compared to the inefficient methods of filtration, steaming, and direct solar heating, it is of great meaningfulness to develop a solar-driven water purification device with efficiency, lightweight, portability, and multi-water-quality purification by taking full advantage of solar-driven interfacial evaporation. Here, a tent-inspired portable solar-driven water purification device consisting of Janus-structured bacterial cellulose aerogel (JBCA) solar evaporator and tent-type condensation recovery device is reported. For the JBCA solar evaporator, it is prepared from biomass bacterial cellulose (BC) as raw material and hydroxylated carbon nanotubes (HCNT) as photothermal material, and the Janus property is achieved by the assistance of hydrophobic and hydrophilic chemical cross-linking. It exhibits lightweight, unibody, high photothermal conversion, efficient evaporation, and multi-water-quality purification capability for representative seawater, urine, and bacterial river water. For the tent-type condensation recovery device, it is based on the prototype of tent and uses flexible ultra-transparent polyvinyl chloride (PVC) film as raw material. Thanks to the rational prototype and material selection, it displays outstanding portability and lightweight through the folding/unfolding method. Therefore, the designed tent-inspired portable solar-driven water purification device demonstrates great potential application in wilderness exploration.

19.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(1): 90-92, 2024 Jan.
Article in Chinese | MEDLINE | ID: mdl-38404280

ABSTRACT

Tracheostomy is a very common airway procedure in the treatment of critically ill neurological patients. At present, the traditional tracheal cannula fixation belt is easy to be contaminated, difficult to disinfect, and needs to be replaced regularly. It is prone to infection, skin injury, unplanned extubation and other adverse events, which cannot meet the clinical treatment effect and patient safety management. In order to overcome the above problems, the medical staff of the neurology intensive care unit of Henan Provincial People's Hospital designed a new type of tracheal cannula fixation belt to increase patient comfort and reduce complications, and obtained a National Utility Model Patent of China (ZL 2022 2 0855188.8). The main structure of the device includes a following shaped bending plate, a fastening belt, a locking pin, and a distance adjustment hole. The left and right sides of the shaped bending plate are equipped with fastening belts with breathable and anti-wear pads. The inner side of the left fastening belt is equipped with two sets of locking pins, and the outer surface of the right fastening belt and breathable and anti-wear pad is equipped with multiple sets of distance adjustment holes. Additionally, the back of the shaped bending plate is equipped with breathable buffer pads. The fastening belt can drive the following bending plate to stick tightly to the patient's neck. The operator installs the locking pin card into the distance adjustment hole according to the "one back" principle, and the fastening belts on both sides fix the device with the cooperation of the locking pin, greatly reducing the probability of excessive displacement of the tracheal tube during use, effectively improving the fixation effect of the device, strengthening the adaptability of the device to different personnel, and thus enhancing the practicality of the device. The new type of tracheal cannula fixation band is convenient, safe and efficient, which can increase patient comfort, reduce complications. It has certain clinical value and is suitable for clinical promotion.


Subject(s)
Bone Plates , Cannula , Humans , Intensive Care Units , Respiration, Artificial , China
20.
Food Chem ; 444: 138630, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38335681

ABSTRACT

This study was aim to investigate the influencing mechanism of ultrasonic treatment on the interaction between volatile aldehydes and myosin. The results showed that when the mass concentration ratio of myosin to heptanal/hexanal was 1:0.3, ultrasonic treatment could enhance the binding capacity of myosin to heptanal/hexanal, especially the binding of myosin to hexanal. The entropy and enthalpy values of their interaction were negative, indicating that the interaction was mainly driven by hydrogen bond and van der Waals force. After ultrasonic treatment, the fluorescence wavelength of myosin-heptanal/hexanal complex was redshifted, the α-helix content was increased, while its roughness values, particle size and the polydispersity index were decreased. These demonstrated that ultrasonic treatment was conducive to myosin binding to heptanal/hexanal, thereby restraining the release of volatile flavor compounds from myosin, which could provide new insights for the regulation of volatile flavor compounds.


Subject(s)
Bivalvia , Ultrasonics , Animals , Aldehydes/chemistry , Myosins , Muscles
SELECTION OF CITATIONS
SEARCH DETAIL