Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Article in English | MEDLINE | ID: mdl-38829708

ABSTRACT

Randomized clinical trials are underway to evaluate the efficacy of novel agents targeting the alternative complement pathway in patients with C3G, a rare glomerular disease. The Kidney Health Initiative (KHI) convened a panel of experts in C3G to: (1) assess the data supporting the use of the prespecified trial endpoints as measures of clinical benefit; and (2) opine on efficacy findings they would consider compelling as treatment(s) for C3G in native kidneys. Two subpanels of the C3G Trial Endpoints Work group reviewed the available evidence and uncertainties for the association between the three prespecified endpoints -- (1) proteinuria; (2) estimated glomerular filtration rate (eGFR); and (3) histopathology -- and anticipated outcomes. The full work group provided feedback on the summaries provided by the subpanels and on what potential treatment effects on the proposed endpoints they would consider compelling to support evidence of an investigational product's effectiveness for treating C3G. Members of the full work group agreed with the characterization of the data, the evidence, and uncertainties, supporting the endpoints. Given the limitations of the available data, the workgroup was unable to define a minimum threshold for change in any of the endpoints that might be considered clinically meaningful. The workgroup concluded that a favorable treatment effect on all three endpoints would provide convincing evidence of efficacy in the setting of a therapy that targeted the complement pathway. A therapy might be considered effective in the absence of complete alignment in all three endpoints if there was meaningful lowering of proteinuria and stabilization or improvement in eGFR. The panel unanimously supported efforts to foster data sharing between academic and industry partners to address the gaps in the current knowledge identified by the review of the endpoints in the aforementioned trials.

2.
Cell Rep Med ; 5(4): 101482, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38552622

ABSTRACT

Glioblastoma is a highly heterogeneous and infiltrative form of brain cancer associated with a poor outcome and limited therapeutic effectiveness. The extent of the surgery is related to survival. Reaching an accurate diagnosis and prognosis assessment by the time of the initial surgery is therefore paramount in the management of glioblastoma. To this end, we are studying the performance of SpiderMass, an ambient ionization mass spectrometry technology that can be used in vivo without invasiveness, coupled to our recently established artificial intelligence pipeline. We demonstrate that we can both stratify isocitrate dehydrogenase (IDH)-wild-type glioblastoma patients into molecular sub-groups and achieve an accurate diagnosis with over 90% accuracy after cross-validation. Interestingly, the developed method offers the same accuracy for prognosis. In addition, we are testing the potential of an immunoscoring strategy based on SpiderMass fingerprints, showing the association between prognosis and immune cell infiltration, to predict patient outcome.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Artificial Intelligence , Tumor Microenvironment , Brain Neoplasms/diagnosis , Prognosis
3.
Hum Psychopharmacol ; 39(3): e2896, 2024 May.
Article in English | MEDLINE | ID: mdl-38353526

ABSTRACT

OBJECTIVE: Stimuli received beyond a very short timeframe, known as temporal binding windows (TBWs), are perceived as separate events. In previous audio-visual multisensory integration (McGurk effect) studies, widening of TBWs has been observed in people with schizophrenia. The present study aimed to determine if dexamphetamine could increase TBWs in unimodal auditory and unimodal visual illusions that may have some validity as experimental models for auditory and visual hallucinations in psychotic disorders. METHODS: A double-blind, placebo-controlled, counter-balanced crossover design with permuted block randomisation for drug order was followed. Dexamphetamine (0.45 mg/kg, PO, q.d.) was administered to healthy participants. Phantom word illusion (speech illusion) and visual-induced flash illusion/VIFI (visual illusion) tests were measured to determine if TBWs were altered as a function of delay between stimuli presentations. Word emotional content for phantom word illusions was also analysed. RESULTS: Dexamphetamine significantly increased the total number of phantom words/speech illusions (p < 0.01) for pooled 220-1100 ms ISIs in kernel density estimation and the number of positive valence words heard (beta = 2.20, 95% CI [1.86, 2.55], t = 12.46, p < 0.001) with a large effect size (std. beta = 1.05, 95% CI [0.89, 1.22]) relative to placebo without affecting the TBWs. For the VIFI test, kernel density estimation for pooled 0-801 ms ISIs showed a significant difference (p < 0.01) in the data distributions of number of target flash (es) perceived by participants after receiving dexamphetamine as compared with placebo. CONCLUSIONS: Overall, healthy participants who were administered dexamphetamine (0.45 mg/kg, PO, q.d.) experienced increases in auditory and visual illusions in both phantom word illusion and VIFI tests without affecting their TBWs.


Subject(s)
Cross-Over Studies , Dextroamphetamine , Illusions , Visual Perception , Humans , Double-Blind Method , Male , Adult , Female , Illusions/drug effects , Illusions/physiology , Young Adult , Dextroamphetamine/pharmacology , Dextroamphetamine/administration & dosage , Visual Perception/drug effects , Visual Perception/physiology , Hallucinations/chemically induced , Time Factors , Photic Stimulation/methods , Central Nervous System Stimulants/pharmacology , Central Nervous System Stimulants/administration & dosage , Acoustic Stimulation , Speech Perception/drug effects , Auditory Perception/drug effects , Auditory Perception/physiology , Adolescent
4.
Anal Bioanal Chem ; 415(28): 7011-7024, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37843548

ABSTRACT

The integration of matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) with single cell spatial omics methods allows for a comprehensive investigation of single cell spatial information and matrisomal N-glycan and extracellular matrix protein imaging. Here, the performance of the antibody-directed single cell workflows coupled with MALDI-MSI are evaluated. Miralys™ photocleavable mass-tagged antibody probes (MALDI-IHC, AmberGen, Inc.), GeoMx DSP® (NanoString, Inc.), and Imaging Mass Cytometry (IMC, Standard BioTools Inc.) were used in series with MALDI-MSI of N-glycans and extracellular matrix peptides on formalin-fixed paraffin-embedded tissues. Single cell omics protocols were performed before and after MALDI-MSI. The data suggests that for each modality combination, there is an optimal order for performing both techniques on the same tissue section. An overall conclusion is that MALDI-MSI studies may be completed on the same tissue section as used for antibody-directed single cell modalities. This work increases access to combined cellular and extracellular information within the tissue microenvironment to enhance research on the pathological origins of disease.


Subject(s)
Antibodies , Polysaccharides , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Polysaccharides/analysis , Peptides/analysis , Collagen , Lasers
5.
Artif Organs ; 47(9): 1431-1441, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37161616

ABSTRACT

OBJECTIVES: To perform a systematic review and meta-analysis of the techniques and outcomes associated with percutaneous decannulation of venoarterial extracorporeal membrane oxygenation (VA-ECMO) using the Manta vascular closure device. BACKGROUND: Peripheral VA-ECMO can be used to treat critically ill patients with conditions such as refractory cardiogenic shock. After percutaneous implantation of VA-ECMO, VA-ECMO can also be decannulated completely percutaneously by using a vascular closure device. The Manta vascular closure device is a dedicated device used in the closure of large-bore arteriotomies by sandwiching the arteriotomy with an intra-arterial toggle and an extraluminal collagen plug. METHODS: We performed a thorough literature search using various electronic databases. We included studies that reported outcomes after peripheral femorofemoral VA-ECMO decannulation with the Manta vascular closure device. We performed a meta-analysis of proportions on outcome measures, including technical success, bleeding complications, vascular complications, wound complications, major amputation, and procedural-related deaths. RESULTS: We included seven studies with a total of 116 patients. The overall technical success of percutaneous decannulation of VA-ECMO with the Manta vascular closure device was 93.7%. The overall incidence of bleeding, vascular and wound complications was 1.7%, 13.8%, and 3.4%, respectively. No patient required lower limb amputation or died due to VA-ECMO decannulation. CONCLUSION: Percutaneous decannulation with the Manta vascular closure device is an effective and safe procedure that should be considered in suitable patients on VA-ECMO.


Subject(s)
Extracorporeal Membrane Oxygenation , Vascular Closure Devices , Humans , Vascular Closure Devices/adverse effects , Extracorporeal Membrane Oxygenation/methods , Shock, Cardiogenic/surgery , Shock, Cardiogenic/complications , Hemorrhage/etiology , Device Removal/adverse effects , Retrospective Studies , Treatment Outcome
6.
Front Chem ; 11: 1182404, 2023.
Article in English | MEDLINE | ID: mdl-37201132

ABSTRACT

Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is one of the most widely used methods for imaging the spatial distribution of unlabeled small molecules such as metabolites, lipids and drugs in tissues. Recent progress has enabled many improvements including the ability to achieve single cell spatial resolution, 3D-tissue image reconstruction, and the precise identification of different isomeric and isobaric molecules. However, MALDI-MSI of high molecular weight intact proteins in biospecimens has thus far been difficult to achieve. Conventional methods normally require in situ proteolysis and peptide mass fingerprinting, have low spatial resolution, and typically detect only the most highly abundant proteins in an untargeted manner. In addition, MSI-based multiomic and multimodal workflows are needed which can image both small molecules and intact proteins from the same tissue. Such a capability can provide a more comprehensive understanding of the vast complexity of biological systems at the organ, tissue, and cellular levels of both normal and pathological function. A recently introduced top-down spatial imaging approach known as MALDI HiPLEX-IHC (MALDI-IHC for short) provides a basis for achieving this high-information content imaging of tissues and even individual cells. Based on novel photocleavable mass-tags conjugated to antibody probes, high-plex, multimodal and multiomic MALDI-based workflows have been developed to image both small molecules and intact proteins on the same tissue sample. Dual-labeled antibody probes enable multimodal mass spectrometry and fluorescent imaging of targeted intact proteins. A similar approach using the same photocleavable mass-tags can be applied to lectin and other probes. We detail here several examples of MALDI-IHC workflows designed to enable high-plex, multiomic and multimodal imaging of tissues at a spatial resolution as low as 5 µm. This approach is compared to other existing high-plex methods such as imaging mass cytometry, MIBI-TOF, GeoMx and CODEX. Finally, future applications of MALDI-IHC are discussed.

7.
Anal Chem ; 95(4): 2329-2338, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36638208

ABSTRACT

Recently, a novel technology was published, utilizing the strengths of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) and immunohistochemistry (IHC), achieving highly multiplexed, targeted imaging of biomolecules in tissue. This new technique, called MALDI-IHC, opened up workflows to target molecules of interest using MALDI-MSI that are usually targeted by standard IHC. In this paper, the utility of targeted MALDI-IHC and its complementarity with untargeted on-tissue bottom-up spatial proteomics is explored using breast cancer tissue. Furthermore, the MALDI-2 effect was investigated and demonstrated to improve MALDI-IHC. Formalin-fixed paraffin-embedded (FFPE) human breast cancer tissue sections were stained for multiplex MALDI-IHC with six photocleavable mass-tagged (PC-MT) antibodies constituting a breast cancer antibody panel (CD20, actin-αSM, HER2, CD68, vimentin, and panCK). K-means spatial clusters were created based on the MALDI-IHC images and cut out using laser-capture microdissection (LMD) for further untargeted LC-MS-based bottom-up proteomics analyses. Numerous peptides could be tentatively assigned to multiple proteins, of which three proteins were also part of the antibody panel (vimentin, keratins, and actin). Post-ionization with MALDI-2 showed an increased intensity of the PC-MTs and suggests options for the development of new mass-tags. Although the on-tissue digestion covered a wider range of proteins, the MALDI-IHC allowed for easy and straightforward identification of proteins that were not detected in untargeted approaches. The combination of the multiplexed MALDI-IHC with image-guided proteomics showed great potential to further investigate diseases by providing complementary information from the same tissue section and without the need for customized instrumentation.


Subject(s)
Breast Neoplasms , Proteomics , Humans , Female , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Vimentin , Proteomics/methods , Immunohistochemistry , Actins , Molecular Imaging
9.
PLOS Glob Public Health ; 2(11): e0001188, 2022.
Article in English | MEDLINE | ID: mdl-36962824

ABSTRACT

Post-COVID syndrome, defined as symptoms persisting for more than twelve weeks after the diagnosis of COVID-19, has been recognised as a new clinical entity in the context of SARS-CoV-2 infection. This study was conducted to characterise the burden and predictors for post-COVID-19 syndrome in the local population. It was a community-based web-survey study conducted in Norfolk, East England, UK. We sent the survey to patients with confirmed COVID-19 infection by real-time polymerase chain reaction by December 6th, 2020. Questions related to the pre-COVID and post-COVID level of symptoms and further healthcare use. Baseline characteristics were collected from the primary care records. Logistic regression analysis was conducted to establish predictors for post-COVID-19 syndrome and further healthcare utilisation. Of 6,318 patients, survey responses were obtained from 1,487 participants (23.5%). Post-COVID-19 syndrome symptoms were experienced by 774 (52.1%) respondents. Male sex compared to female sex was a factor protective of post-COVID symptoms; relative risk (RR) 0.748, 95% confidence interval (CI), 0.605-0.924. Body mass index was associated with a greater risk of developing post-COVID-19 symptoms (RR 1.031, 95% CI, 1.016-1.047, for 1 kg/m2). A total of 378 (25.4%) people used further health services after their index COVID-19 infection, of whom 277 (73.2%) had post-COVID symptoms. Male sex was negatively associated with the use of further health services (RR 0.618, 95% CI, 0.464-0.818) whereas BMI was positively associated (RR 1.027, 95% CI, 1.009-1.046). Overall, post-COVID-19 symptoms increased the probability of using health services with RR 3.280, 95% CI, 2.540-4.262. This survey of a large number of people previously diagnosed with COVID-19 across East England shows a high prevalence of self-reported post-COVID-19 syndrome. Female sex and BMI were associated with an increased risk of post-COVID-19 syndrome and further utilisation of healthcare.

10.
J Am Soc Mass Spectrom ; 32(4): 977-988, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33631930

ABSTRACT

Immunohistochemistry (IHC) combined with fluorescence microscopy provides an important and widely used tool for researchers and pathologists to image multiple biomarkers in tissue specimens. However, multiplex IHC using standard fluorescence microscopy is generally limited to 3-5 different biomarkers, with hyperspectral or multispectral methods limited to 8. We report the development of a new technology based on novel photocleavable mass-tags (PC-MTs) for facile antibody labeling, which enables highly multiplexed IHC based on MALDI mass spectrometric imaging (MALDI-IHC). This approach significantly exceeds the multiplexity of both fluorescence- and previous cleavable mass-tag-based methods. Up to 12-plex MALDI-IHC was demonstrated on mouse brain, human tonsil, and breast cancer tissues specimens, reflecting the known molecular composition, anatomy, and pathology of the targeted biomarkers. Novel dual-labeled fluorescent PC-MT antibodies and label-free small-molecule mass spectrometric imaging greatly extend the capability of this new approach. MALDI-IHC shows promise for use in the fields of tissue pathology, tissue diagnostics, therapeutics, and precision medicine.


Subject(s)
Biomarkers/analysis , Immunohistochemistry/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Animals , Biomarkers, Tumor/analysis , Brain Chemistry , Breast Neoplasms/chemistry , Female , Fluorescent Antibody Technique , Humans , In Situ Hybridization , Mice , Microspheres , Palatine Tonsil/chemistry , Peptides/chemistry , Peptides/radiation effects , Photochemistry , Streptavidin , Ultraviolet Rays
11.
Lancet Infect Dis ; 20(7): e165-e172, 2020 07.
Article in English | MEDLINE | ID: mdl-32595046

ABSTRACT

Although preventive chemotherapy has been instrumental in reducing schistosomiasis incidence worldwide, serious challenges remain. These problems include the omission of certain groups from campaigns of mass drug administration, the existence of persistent disease hotspots, and the risk of recrudescent infections. Central to these challenges is the fact that the diagnostic tools currently used to establish the burden of infection are not sensitive enough, especially in low-endemic settings, which results in underestimation of the true prevalence of active Schistosoma spp infections. This central issue necessitates that the current schistosomiasis control strategies recommended by WHO are re-evaluated and, possibly, adapted. More targeted interventions and novel approaches have been used to estimate the prevalence of schistosomiasis, such as establishing infection burden by use of precision mapping, which provides high resolution spatial information that delineates variations in prevalence within a defined geographical area. Such information is instrumental in guiding targeted intervention campaigns. However, the need for highly accurate diagnostic tools in such strategies is a crucial factor that is often neglected. The availability of highly sensitive diagnostic tests also opens up the possibility of applying strategies of sample pooling to reduce the cost of control programmes. To interrupt the transmission of, and eventually eliminate, schistosomiasis, better local targeting of preventive chemotherapy, in combination with highly sensitive diagnostic tools, is crucial.


Subject(s)
Anthelmintics/administration & dosage , Anthelmintics/therapeutic use , Diagnostic Tests, Routine/methods , Disease Eradication , Schistosomiasis/diagnosis , Schistosomiasis/drug therapy , Humans , Mass Drug Administration
12.
BMC Pulm Med ; 20(1): 121, 2020 May 04.
Article in English | MEDLINE | ID: mdl-32366303

ABSTRACT

BACKGROUND: An asymptomatic SCUBA (Self-contained underwater breathing apparatus) diver was discovered to have an intralobar bronchopulmonary sequestration during routine pre-course screening. This is the first reported case of a diver who, having previously completed several recreational and military diving courses, was subsequently diagnosed with a congenital lung condition, possibly contraindicating diving. Presently, there is no available literature providing guidance on the diving fitness of patients with such a condition. CASE PRESENTATION: An asymptomatic 26-year-old male diver was nominated to attend an overseas naval diving course. Prior to this, he had been medically certified to participate in, and had successfully completed other military and recreational diving courses. He had also completed several hyperbaric dives up to a depth of 50 m and 45 recreational dives up to a depth of 30 m. He did not have a history of diving-related injuries or complications. He had never smoked and did not have any medical or congenital conditions, specifically recurrent respiratory infections. As part of pre-course screening requirements, a lateral Chest X-ray was performed, which revealed a left lower lobe pulmonary nodule. This was subsequently diagnosed as a cavitatory left lower lobe intralobar bronchopulmonary sequestration on Computed Tomography Thorax. The diver remains asymptomatic and well at the time of writing and has been accepted to participate in another overseas course involving only dry diving in a hyperbaric chamber, with no prerequisites for him to undergo surgery. CONCLUSION: Although bronchopulmonary sequestrations lack communication with the tracheobronchial tree, they may still contain pockets of air, even if not radiologically visible. This can be attributed to anomalous connections which link them to other bronchi, lung parenchyma and/or pores of Kohn. As such, there is a higher theoretical risk of pulmonary barotrauma during diving, leading to pneumothorax, pneumomediastinum, or cerebral arterial gas embolism. Taking these into consideration, the current clinical consensus is that bronchopulmonary sequestrations and all other air-containing lung parenchymal lesions should be regarded as contraindications to diving. Patients who have undergone definitive and uncomplicated surgical resection may be considered fit to dive.


Subject(s)
Barotrauma/etiology , Bronchopulmonary Sequestration/etiology , Diving/adverse effects , Lung Injury/etiology , Adult , Bronchopulmonary Sequestration/diagnostic imaging , Humans , Lung Injury/diagnostic imaging , Male , Radiography, Thoracic , Tomography, X-Ray Computed
13.
Sci Rep ; 10(1): 3840, 2020 03 02.
Article in English | MEDLINE | ID: mdl-32123187

ABSTRACT

Progesterone-induced blocking factor (PIBF), which plays an important role in maintaining healthy pregnancies, has shown great promise as a prognostic biomarker for threatened miscarriage. To better characterise the physiological trends of progesterone and PIBF, we analysed serum progesterone and PIBF concentrations in healthy non-pregnant and pregnant women across trimesters. We saw increasing concentrations of progesterone and PIBF in pregnant women with advancing trimesters. The serum progesterone and PIBF percentiles across gestational age in healthy pregnancies can be used as a guide for the formulation of reference ranges. We also demonstrated a significant positive correlation between progesterone and PIBF levels. This study demonstrates increasing progesterone and PIBF concentrations in later trimesters and underscores the importance of progesterone and PIBF in healthy pregnancies. Characterisation of progesterone and PIBF across gestational age in healthy pregnant women may help to prognosticate pregnancy viability and support further research into the importance of progesterone and PIBF in the maintenance of healthy pregnancies.


Subject(s)
Healthy Volunteers , Pregnancy Proteins/blood , Pregnancy Trimesters/blood , Progesterone/blood , Suppressor Factors, Immunologic/blood , Adult , Female , Humans , Pregnancy
14.
Anal Chim Acta ; 1037: 177-187, 2018 Dec 11.
Article in English | MEDLINE | ID: mdl-30292292

ABSTRACT

Carnitines are diagnostic biomarkers of fatty acid oxidation defects and organic acidemias. Quantitative measurements of various carnitines in dried blood spot (DBS) have potential use in remote health applications for disease diagnosis and epidemiological surveillance. To provide an improved LC/multiple-reaction monitoring (MRM)-MS method for quantitation of carnitines in DBS, 3-nitrophenylhydrazine (3NPH) was tested as a high-efficiency chemical isotope-labeling reagent for pre-analytical derivatization of 24 routinely-analyzed species. Reaction conditions were optimized and carnitine structural isomers were separated by reversed-phase LC with positive-ion MRM/MS detection, giving on-column lower LOQs of sub- to low-femtomole levels. 13C6-3NPH was used to produce 13C6- or 13C12-labeled derivatives of the mono- and di-carboxylic carnitines in a "one-pot" reaction. These labeled analogues were used as stable isotope-labeled internal standards to compensate for possible ESI matrix effects. Combined with an optimized, two-step procedure for the extraction of carnitines from DBS, this isotope-labeling derivatizaiton - LC/MRM-MS method provided good linearity, high precision (intra-day CVs of ≤7.8% and inter-day CVs of ≤8.8%) and high accuracy (three levels of standard substances spiked in, with recoveries of 86.9%-109.7%) quantitation of carnitines in three sets of DBSs on cellulose or cotton filter paper. This method was then applied to determine the concentration changes of the analytes in the DBSs under two stability-testing regimes: 1) a one-time 4-h sunlight exposure and 2) a set of cycled temperature transitions (-20 °C for 2 days, 40 °C for 2 days, and back to -20 °C for 2 additional days). All of the carnitines showed good stabilities under the first testing condition. Under the second testing condition, free carnitine showed concentration increases of 9.3%-16.1%; acetyl carnitine, 3-OH butyryl carnitine, and malonyl carnitine showed concentration decreases of 12.2%-17.3%, 12.9%-17.1% and 10.7%-15.3%, respectively, and other 20 acyl carnitines showed concentration changes of <10% in three sets of DBSs on cellulose or cotton filter paper. These preliminary stability-testing results indicate a need to more systematically investigate the effects of various environmental conditions on the chemical stabilities of carnitines in DBS specimens if this sampling method is to be used in remote health applications.


Subject(s)
Carnitine/analysis , Dried Blood Spot Testing , Phenylhydrazines/chemistry , Carbon Isotopes , Chromatography, Liquid , Humans , Isotope Labeling , Mass Spectrometry , Molecular Conformation
15.
Am J Trop Med Hyg ; 99(2): 256-265, 2018 08.
Article in English | MEDLINE | ID: mdl-29968557

ABSTRACT

There is increasing interest in using dried blood spot (DBS) cards to extend the reach of global health and disease surveillance programs to hard-to-reach populations. Conceptually, DBS offers a cost-effective solution for multiple use cases by simplifying logistics for collecting, preserving, and transporting blood specimens in settings with minimal infrastructure. This review describes methods to determine both the reliability of DBS-based bioanalysis for a defined use case and the optimal conditions that minimize pre-analytical sources of data variability. Examples by the newborn screening, drug development, and global health communities are provided in this review of published literature. Sources of variability are linked in most cases, emphasizing the importance of field-to-laboratory standard operating procedures that are evidence based and consider both stability and efficiency of recovery for a specified analyte in defining the type of DBS card, accessories, handling procedures, and storage conditions. Also included in this review are reports where DBS was determined to not be feasible because of technology limitations or physiological properties of a targeted analyte.


Subject(s)
Dried Blood Spot Testing/methods , Global Health , Diagnostic Tests, Routine/instrumentation , Diagnostic Tests, Routine/methods , Dried Blood Spot Testing/economics , Dried Blood Spot Testing/trends , Drug Development , Humans , Infant, Newborn , Neonatal Screening , Reproducibility of Results , Sensitivity and Specificity , Specimen Handling
17.
PLoS One ; 13(2): e0191987, 2018.
Article in English | MEDLINE | ID: mdl-29389948

ABSTRACT

Multiplex serological immunoassays, such as implemented on microarray or microsphere-based platforms, provide greater information content and higher throughput, while lowering the cost and blood volume required. These features are particularly attractive in pediatric food allergy testing to facilitate high throughput multi-allergen analysis from finger- or heel-stick collected blood. However, the miniaturization and microfluidics necessary for creating multiplex assays make them highly susceptible to the "matrix effect" caused by interference from non-target agents in serum and other biofluids. Such interference can result in lower sensitivity, specificity, reproducibility and quantitative accuracy. These problems have in large part prevented wide-spread implementation of multiplex immunoassays in clinical laboratories. We report the development of a novel method to eliminate the matrix effect by utilizing photocleavable capture antibodies to purify and concentrate blood-based biomarkers (a process termed PC-PURE) prior to detection in a multiplex immunoassay. To evaluate this approach, it was applied to blood-based allergy testing. Patient total IgE was purified and enriched using PC-PURE followed by multiplex microsphere-based detection of allergen-specific IgEs (termed the AllerBead assay). AllerBead was formatted to detect the eight most common pediatric food allergens: milk, soy, wheat, egg, peanuts, tree nuts, fin fish and shellfish, which account for >90% of all pediatric food allergies. 205 serum samples obtained from Boston Children's Hospital were evaluated. When PC-PURE was employed with AllerBead, excellent agreement was obtained with the standard, non-multiplex, ImmunoCAP® assay (average sensitivity above published negative predictive cutoffs = 96% and average Pearson r = 0.90; average specificity = 97%). In contrast, poor ImmunoCAP®-correlation was observed when PC-PURE was not utilized (average sensitivity above published negative predictive cutoffs = 59% and average Pearson r = 0.61; average specificity = 97%). This approach should be adaptable to improve a wide range of multiplex immunoassays such as in cancer, infectious disease and autoimmune disease.


Subject(s)
Biomarkers/blood , Chromatography, Affinity/methods , Food Hypersensitivity/diagnosis , Allergens/immunology , Antibodies/immunology , Food Hypersensitivity/blood , Food Hypersensitivity/immunology , Humans , Immunoassay , Immunoglobulin E/immunology , Miniaturization , Photochemical Processes
19.
BBA Clin ; 8: 48-55, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28879096

ABSTRACT

Threatened miscarriage is the most common gynecological emergency, occurring in about 20% of pregnant women. Approximately one in four of these patients go on to have spontaneous miscarriage and the etiology of miscarriage still remains elusive. In a bid to identify possible biomarkers and novel treatment targets, many studies have been undertaken to elucidate the pathways that lead to a miscarriage. Luteal phase deficiency has been shown to contribute to miscarriages, and the measurement of serum progesterone as a prognostic marker and the prescription of progesterone supplementation has been proposed as possible diagnostic and treatment methods. However, luteal phase deficiency only accounts for 35% of miscarriages. In order to understand the other causes of spontaneous miscarriage and possible novel urine biomarkers for miscarriage, we looked at the changes in urinary metabolites in women with threatened miscarriage. To this end, we performed a case-control study of eighty patients who presented with threatened miscarriage between 6 and 10 weeks gestation. Urine metabolomics analyses of forty patients with spontaneous miscarriages and forty patients with ongoing pregnancies at 16 weeks gestation point to an impaired placental mitochondrial ß-oxidation of fatty acids as the possible cause of spontaneous miscarriage. This study also highlighted the potential of urine metabolites as a non-invasive screening tool for the risk stratification of women presenting with threatened miscarriage.

20.
Neuroimage ; 149: 404-414, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28131890

ABSTRACT

Advances in the field of quantum sensing mean that magnetic field sensors, operating at room temperature, are now able to achieve sensitivity similar to that of cryogenically cooled devices (SQUIDs). This means that room temperature magnetoencephalography (MEG), with a greatly increased flexibility of sensor placement can now be considered. Further, these new sensors can be placed directly on the scalp surface giving, theoretically, a large increase in the magnitude of the measured signal. Here, we present recordings made using a single optically-pumped magnetometer (OPM) in combination with a 3D-printed head-cast designed to accurately locate and orient the sensor relative to brain anatomy. Since our OPM is configured as a magnetometer it is highly sensitive to environmental interference. However, we show that this problem can be ameliorated via the use of simultaneous reference sensor recordings. Using median nerve stimulation, we show that the OPM can detect both evoked (phase-locked) and induced (non-phase-locked oscillatory) changes when placed over sensory cortex, with signals ~4 times larger than equivalent SQUID measurements. Using source modelling, we show that our system allows localisation of the evoked response to somatosensory cortex. Further, source-space modelling shows that, with 13 sequential OPM measurements, source-space signal-to-noise ratio (SNR) is comparable to that from a 271-channel SQUID system. Our results highlight the opportunity presented by OPMs to generate uncooled, potentially low-cost, high SNR MEG systems.


Subject(s)
Brain Mapping/methods , Brain/physiology , Magnetoencephalography/instrumentation , Magnetoencephalography/methods , Evoked Potentials, Somatosensory/physiology , Humans , Signal-To-Noise Ratio , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL