Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Plants (Basel) ; 13(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38674551

ABSTRACT

Auxin is a crucial hormone that regulates various aspects of plant growth and development. It exerts its effects through multiple signaling pathways, including the TIR1/AFB-based transcriptional regulation in the nucleus. However, the specific role of auxin receptors in determining developmental features in the strawberry (Fragaria vesca) remains unclear. Our research has identified FveAFB5, a potential auxin receptor, as a key player in the development and auxin responses of woodland strawberry diploid variety Hawaii 4. FveAFB5 positively influences lateral root development, plant height, and fruit development, while negatively regulating shoot branching. Moreover, the mutation of FveAFB5 confers strong resistance to the auxinic herbicide picloram, compared to dicamba and quinclorac. Transcriptome analysis suggests that FveAFB5 may initiate auxin and abscisic acid signaling to inhibit growth in response to picloram. Therefore, FveAFB5 likely acts as an auxin receptor involved in regulating multiple processes related to strawberry growth and development.

2.
Tomography ; 10(1): 133-158, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38250957

ABSTRACT

Sparse view computed tomography (SVCT) aims to reduce the number of X-ray projection views required for reconstructing the cross-sectional image of an object. While SVCT significantly reduces X-ray radiation dose and speeds up scanning, insufficient projection data give rise to issues such as severe streak artifacts and blurring in reconstructed images, thereby impacting the diagnostic accuracy of CT detection. To address this challenge, a dual-domain reconstruction network incorporating multi-level wavelet transform and recurrent convolution is proposed in this paper. The dual-domain network is composed of a sinogram domain network (SDN) and an image domain network (IDN). Multi-level wavelet transform is employed in both IDN and SDN to decompose sinograms and CT images into distinct frequency components, which are then processed through separate network branches to recover detailed information within their respective frequency bands. To capture global textures, artifacts, and shallow features in sinograms and CT images, a recurrent convolution unit (RCU) based on convolutional long and short-term memory (Conv-LSTM) is designed, which can model their long-range dependencies through recurrent calculation. Additionally, a self-attention-based multi-level frequency feature normalization fusion (MFNF) block is proposed to assist in recovering high-frequency components by aggregating low-frequency components. Finally, an edge loss function based on the Laplacian of Gaussian (LoG) is designed as the regularization term for enhancing the recovery of high-frequency edge structures. The experimental results demonstrate the effectiveness of our approach in reducing artifacts and enhancing the reconstruction of intricate structural details across various sparse views and noise levels. Our method excels in both performance and robustness, as evidenced by its superior outcomes in numerous qualitative and quantitative assessments, surpassing contemporary state-of-the-art CNNs or Transformer-based reconstruction methods.


Subject(s)
Tomography, X-Ray Computed , Wavelet Analysis , Artifacts
3.
Cell ; 186(25): 5457-5471.e17, 2023 12 07.
Article in English | MEDLINE | ID: mdl-37979582

ABSTRACT

Extracellular perception of auxin, an essential phytohormone in plants, has been debated for decades. Auxin-binding protein 1 (ABP1) physically interacts with quintessential transmembrane kinases (TMKs) and was proposed to act as an extracellular auxin receptor, but its role was disputed because abp1 knockout mutants lack obvious morphological phenotypes. Here, we identified two new auxin-binding proteins, ABL1 and ABL2, that are localized to the apoplast and directly interact with the extracellular domain of TMKs in an auxin-dependent manner. Furthermore, functionally redundant ABL1 and ABL2 genetically interact with TMKs and exhibit functions that overlap with those of ABP1 as well as being independent of ABP1. Importantly, the extracellular domain of TMK1 itself binds auxin and synergizes with either ABP1 or ABL1 in auxin binding. Thus, our findings discovered auxin receptors ABL1 and ABL2 having functions overlapping with but distinct from ABP1 and acting together with TMKs as co-receptors for extracellular auxin.


Subject(s)
Arabidopsis , Indoleacetic Acids , Plant Growth Regulators , Indoleacetic Acids/metabolism , Plant Growth Regulators/metabolism , Arabidopsis/chemistry , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism
4.
Nucleic Acids Res ; 51(21): 11568-11583, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37850650

ABSTRACT

The cistrome consists of all cis-acting regulatory elements recognized by transcription factors (TFs). However, only a portion of the cistrome is active for TF binding in a specific tissue. Resolving the active cistrome in plants remains challenging. In this study, we report the assay sequential extraction assisted-active TF identification (sea-ATI), a low-input method that profiles the DNA sequences recognized by TFs in a target tissue. We applied sea-ATI to seven plant tissues to survey their active cistrome and generated 41 motif models, including 15 new models that represent previously unidentified cis-regulatory vocabularies. ATAC-seq and RNA-seq analyses confirmed the functionality of the cis-elements from the new models, in that they are actively bound in vivo, located near the transcription start site, and influence chromatin accessibility and transcription. Furthermore, comparing dimeric WRKY CREs between sea-ATI and DAP-seq libraries revealed that thermodynamics and genetic drifts cooperatively shaped their evolution. Notably, sea-ATI can identify not only positive but also negative regulatory cis-elements, thereby providing unique insights into the functional non-coding genome of plants.


Subject(s)
Plants , Transcription Factors , Vocabulary , Chromatin , Protein Binding/genetics , Regulatory Sequences, Nucleic Acid , Transcription Factors/genetics , Transcription Factors/metabolism , Plants/genetics
5.
iScience ; 26(3): 106267, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36936782

ABSTRACT

Microglia play an important role in neuroinflammation and neurodegeneration. Here, we report an approach for generating microglia-containing cerebral organoids derived from human pluripotent stem cells involving the supplementation of growth factors (FGF, EGF, heparin) and 10% CO2 culture conditions. Using this platform, Western Pacific Amyotrophic Lateral Sclerosis and Parkinsonism-Dementia Complex (ALS-PDC) cerebral organoids were generated from patient-derived induced pluripotent stem cells (iPSCs). These ALS-PDC-affected organoids had more reactive astrocytes and M1 microglia, and had fewer M2 microglia than their unaffected counterparts, leading to impaired microglia-mediated phagocytosis. RNA-seq analysis of ALS-PDC and control organoids indicated that the most significant changes were microglia- and astrocyte-related genes (IFITM1/2, TGF-ß, and GFAP). The most significantly downregulated pathway was type I interferon signaling. Interferon-gamma supplementation increased IFITM expression, enhanced microglia-mediated phagocytosis, and reduced beta-amyloid accumulation in ALS-PDC-affected network. The results demonstrated the feasibility of using microglia-containing organoids for the study of neurodegenerative diseases.

6.
Plant J ; 114(3): 499-518, 2023 05.
Article in English | MEDLINE | ID: mdl-36786697

ABSTRACT

Because allohexaploid wheat genome contains ABD subgenomes, how the expression of homoeologous genes is coordinated remains largely unknown, particularly at the co-transcriptional level. Alternative polyadenylation (APA) is an important part of co-transcriptional regulation, which is crucial in developmental processes and stress responses. Drought stress is a major threat to the stable yield of wheat. Focusing on APA, we used poly(A) tag sequencing to track poly(A) site dynamics in wheat under drought stress. The results showed that drought stress led to extensive APA involving 37-47% of differentially expressed genes in wheat. Significant poly(A) site switching was found in stress-responsive genes. Interestingly, homoeologous genes exhibit unequal numbers of poly(A) sites, divergent APA patterns with tissue specificity and time-course dynamics, and distinct 3'-UTR length changes. Moreover, differentially expressed transcripts in leaves and roots used different poly(A) signals, the up- and downregulated isoforms had distinct preferences for non-canonical poly(A) sites. Genes that encode key polyadenylation factors showed differential expression patterns under drought stress. In summary, poly(A) signals and the changes in core poly(A) factors may widely affect the selection of poly(A) sites and gene expression levels during the response to drought stress, and divergent APA patterns among homoeologous genes add extensive plasticity to this responsive network. These results not only reveal the significant role of APA in drought stress response, but also provide a fresh perspective on how homoeologous genes contribute to adaptability through transcriptome diversity. In addition, this work provides information about the ends of transcripts for a better annotation of the wheat genome.


Subject(s)
Polyadenylation , Triticum , Polyadenylation/genetics , Triticum/genetics , Triticum/metabolism , Droughts , Transcriptome/genetics , Gene Expression Regulation , Gene Expression Regulation, Plant/genetics
7.
Proc Natl Acad Sci U S A ; 120(1): e2208525120, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36580600

ABSTRACT

Dimethylated histone H3 Lys9 (H3K9me2) is a conserved heterochromatic mark catalyzed by SUPPRESSOR OF VARIEGATION 3-9 HOMOLOG (SUVH) methyltransferases in plants. However, the mechanism underlying the locus specificity of SUVH enzymes has long been elusive. Here, we show that a conserved N-terminal motif is essential for SUVH6-mediated H3K9me2 deposition in planta. The SUVH6 N-terminal peptide can be recognized by the bromo-adjacent homology (BAH) domain of the RNA- and chromatin-binding protein ANTI-SILENCING 1 (ASI1), which has been shown to function in a complex to confer gene expression regulation. Structural data indicate that a classic aromatic cage of ASI1-BAH domain specifically recognizes an arginine residue of SUVH6 through extensive hydrogen bonding interactions. A classic aromatic cage of ASI1 specifically recognizes an arginine residue of SUVH6 through extensive cation-π interactions, playing a key role in recognition. The SUVH6-ASI1 module confers locus-specific H3K9me2 deposition at most SUVH6 target loci and gives rise to distinct regulation of gene expression depending on the target loci, either conferring transcriptional silencing or posttranscriptional processing of mRNA. More importantly, such mechanism is conserved in multiple plant species, indicating a coordinated evolutionary process between SUVH6 and ASI1. In summary, our findings uncover a conserved mechanism for the locus specificity of H3K9 methylation in planta. These findings provide mechanistic insights into the delicate regulation of H3K9 methylation homeostasis in plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , DNA Methylation , Histones/genetics , Histones/metabolism , Arginine/metabolism , Catalysis
8.
Trends Plant Sci ; 28(2): 223-234, 2023 02.
Article in English | MEDLINE | ID: mdl-36175275

ABSTRACT

Precise regulation of gene expression is crucial for plant survival. As a cotranscriptional regulatory mechanism, pre-mRNA polyadenylation is essential for fine-tuning gene expression. Polyadenylation can be alternatively projected at various sites of a transcript, which contributes to transcriptome diversity. Epigenetic modification is another mechanism of transcriptional control. Recent studies have uncovered crosstalk between cotranscriptional polyadenylation processes and both epigenomic and epitranscriptomic markers. Genetic analyses have demonstrated that DNA methylation, histone modifications, and epitranscriptomic modification are involved in regulating polyadenylation in plants. Here we summarize current understanding of the links between epigenetics and polyadenylation and their novel biological efficacy for plant development and environmental responses. Unresolved issues and future directions are discussed to shed light on the field.


Subject(s)
Epigenomics , Polyadenylation , Polyadenylation/genetics , Epigenesis, Genetic/genetics , Plants/genetics , Plants/metabolism , RNA/metabolism
9.
J Integr Plant Biol ; 64(12): 2425-2437, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36250442

ABSTRACT

Callus induction, which results in fate transition in plant cells, is considered as the first and key step for plant regeneration. This process can be stimulated in different tissues by a callus-inducing medium (CIM), which contains a high concentration of phytohormone auxin. Although a few key regulators for callus induction have been identified, the multiple aspects of the regulatory mechanism driven by high levels of auxin still need further investigation. Here, we find that high auxin induces callus through a H3K36 histone methylation-dependent mechanism, which requires the methyltransferase SET DOMAIN GROUP 8 (SDG8). During callus induction, the increased auxin accumulates SDG8 expression through a TIR1/AFBs-based transcriptional regulation. SDG8 then deposits H3K36me3 modifications on the loci of callus-related genes, including a master regulator WOX5 and the cell proliferation-related genes, such as CYCB1.1. This epigenetic regulation in turn is required for the transcriptional activation of these genes during callus formation. These findings suggest that the massive transcriptional reprogramming for cell fate transition by auxin during callus formation requires epigenetic modifications including SDG8-mediated histone H3K36 methylation. Our results provide insight into the coordination between auxin signaling and epigenetic regulation during fundamental processes in plant development.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Histones/metabolism , Methylation , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Indoleacetic Acids/pharmacology , Indoleacetic Acids/metabolism , Epigenesis, Genetic , PR-SET Domains , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Gene Expression Regulation, Plant
10.
Front Plant Sci ; 13: 929831, 2022.
Article in English | MEDLINE | ID: mdl-35873981

ABSTRACT

In strawberries, fruit set is considered as the transition from the quiescent ovary to a rapidly growing fruit. Auxin, which is produced from the fertilized ovule in the achenes, plays a key role in promoting the enlargement of receptacles. However, detailed regulatory mechanisms for fruit set and the mutual regulation between achenes and receptacles are largely unknown. In this study, we found that pollination promoted fruit development (both achene and receptacle), which could be stimulated by exogenous auxin treatment. Interestingly, auxin was highly accumulated in achenes, but not in receptacles, after pollination. Further transcriptome analysis showed that only a small portion of the differentially expressed genes induced by pollination overlapped with those by exogenous auxin treatment. Auxin, but not pollination, was able to activate the expression of growth-related genes, especially in receptacles, which resulted in fast growth. Meanwhile, those genes involved in the pathways of other hormones, such as GA and cytokinin, were also regulated by exogenous auxin treatment, but not pollination. This suggested that pollination was not able to activate auxin responses in receptacles but produced auxin in fertilized achenes, and then auxin might be able to transport or transduce from achenes to receptacles and promote fast fruit growth at the early stage of fruit initiation. Our work revealed a potential coordination between achenes and receptacles during fruit set, and auxin might be a key coordinator.

11.
Front Plant Sci ; 13: 866054, 2022.
Article in English | MEDLINE | ID: mdl-35401636

ABSTRACT

Salt tolerance is an important mechanism by which plants can adapt to a saline environment. To understand the process of salt tolerance, we performed global analyses of mRNA alternative polyadenylation (APA), an important regulatory mechanism during eukaryotic gene expression, in Arabidopsis thaliana and its halophytic relative Eutrema salsugineum with regard to their responses to salt stress. Analyses showed that while APA occurs commonly in both Arabidopsis and Eutrema, Eutrema possesses fewer APA genes than Arabidopsis (47% vs. 54%). However, the proportion of APA genes was significantly increased in Arabidopsis under salt stress but not in Eutrema. This indicated that Arabidopsis is more sensitive to salt stress and that Eutrema exhibits an innate response to such conditions. Both species utilized distal poly(A) sites under salt stress; however, only eight genes were found to overlap when their 3' untranslated region (UTR) lengthen genes were compared, thus revealing their distinct responses to salt stress. In Arabidopsis, genes that use distal poly(A) sites were enriched in response to salt stress. However, in Eutrema, the use of poly(A) sites was less affected and fewer genes were enriched. The transcripts with upregulated poly(A) sites in Arabidopsis showed enriched pathways in plant hormone signal transduction, starch and sucrose metabolism, and fatty acid elongation; in Eutrema, biosynthetic pathways (stilbenoid, diarylheptanoid, and gingerol) and metabolic pathways (arginine and proline) showed enrichment. APA was associated with 42% and 29% of the differentially expressed genes (DE genes) in Arabidopsis and Eutrema experiencing salt stress, respectively. Salt specific poly(A) sites and salt-inducible APA events were identified in both species; notably, some salt tolerance-related genes and transcription factor genes exhibited differential APA patterns, such as CIPK21 and LEA4-5. Our results suggest that adapted species exhibit more orderly response at the RNA maturation step under salt stress, while more salt-specific poly(A) sites were activated in Arabidopsis to cope with salinity conditions. Collectively, our findings not only highlight the importance of APA in the regulation of gene expression in response to salt stress, but also provide a new perspective on how salt-sensitive and salt-tolerant species perform differently under stress conditions through transcriptome diversity.

12.
New Phytol ; 232(2): 835-852, 2021 10.
Article in English | MEDLINE | ID: mdl-34289124

ABSTRACT

Despite a much higher proportion of intragenic heterochromatin-containing genes in crop genomes, the importance of intragenic heterochromatin in crop development remains unclear. Intragenic heterochromatin can be recognised by a protein complex, ASI1-AIPP1-EDM2 (AAE) complex, to regulate alternative polyadenylation. Here, we investigated the impact of rice ASI1 on global poly(A) site usage through poly(A) sequencing and ASI1-dependent regulation on rice development. We found that OsASI1 is essential for rice pollen development and flowering. OsASI1 dysfunction has an important impact on global poly(A) site usage, which is closely related to heterochromatin marks. Intriguingly, OsASI1 interacts with the intronic heterochromatin of OsXRNL, a nuclear XRN family exonuclease gene involved in the processing of an miRNA precursor, to promote the processing of full-length OsXRNL and regulate miRNA abundance. We found that OsASI1-mediated regulation of pollen development partially depends on OsXRNL. Finally, we characterised the rice AAE complex and its involvement in alternative polyadenylation and pollen development. Our findings help to elucidate an epigenetic mechanism governing miRNA abundance and rice development, and provide a valuable resource for studying the epigenetic mechanisms of many important processes in crops.


Subject(s)
MicroRNAs , Oryza , Gene Expression Regulation, Plant , Heterochromatin/genetics , MicroRNAs/genetics , Oryza/genetics , Pollen/genetics , Polyadenylation
13.
Brief Bioinform ; 22(6)2021 11 05.
Article in English | MEDLINE | ID: mdl-34255024

ABSTRACT

The dynamic choice of different polyadenylation sites in a gene is referred to as alternative polyadenylation, which functions in many important biological processes. Large-scale messenger RNA 3' end sequencing has revealed that cleavage sites for polyadenylation are presented with microheterogeneity. To date, the conventional determination of polyadenylation site clusters is subjective and arbitrary, leading to inaccurate annotations. Here, we present a weighted density peak clustering method, QuantifyPoly(A), to accurately quantify genome-wide polyadenylation choices. Applying QuantifyPoly(A) on published 3' end sequencing datasets from both animals and plants, their polyadenylation profiles are reshaped into myriads of novel polyadenylation site clusters. Most of these novel polyadenylation site clusters show significantly dynamic usage across different biological samples or associate with binding sites of trans-acting factors. Upstream sequences of these clusters are enriched with polyadenylation signals UGUA, UAAA and/or AAUAAA in a species-dependent manner. Polyadenylation site clusters also exhibit species specificity, while plants ones generally show higher microheterogeneity than that of animals. QuantifyPoly(A) is broadly applicable to any types of 3' end sequencing data and species for accurate quantification and construction of the complex and dynamic polyadenylation landscape and enables us to decode alternative polyadenylation events invisible to conventional methods at a much higher resolution.


Subject(s)
Poly A/metabolism , Animals , Arabidopsis/metabolism , Oryza/metabolism , Polyadenylation
14.
Methods Enzymol ; 655: 73-83, 2021.
Article in English | MEDLINE | ID: mdl-34183134

ABSTRACT

Alternative polyadenylation (APA) is an essential regulatory mechanism for gene expression. The next generation sequencing provides ample opportunity to precisely delineate APA sites genome-wide. Various methods for profiling transcriptome-wide poly(A) sites were developed. By comparing available methods, the ways for adding sequencing adaptors to fit with the Illumina sequencing platform are different. These methods have identified more than 50% genes that undergo APA in eukaryotes. However, due to the unbalanced PCR during library preparation, accurate quantification of poly(A) sites is still a challenge. Here, we describe an updated poly(A) tag sequencing method that incorporates unique molecular identifier (UMI) into the adaptor for removing quantification bias induced by PCR duplicates. Hence, quantification of poly(A) site usages can be achieved by counting UMIs. This protocol, quantifying poly(A) tag sequencing (QPAT-seq), can be finished in 1 day with reduced cost, and is particularly useful for application with a large number of samples.


Subject(s)
Poly A , Polyadenylation , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Poly A/genetics , Poly A/metabolism , Transcriptome
15.
RNA Biol ; 18(12): 2594-2604, 2021 12.
Article in English | MEDLINE | ID: mdl-34036876

ABSTRACT

Alternative polyadenylation (APA) is a widespread post-transcriptional modification method that changes the 3' ends of transcripts by altering poly(A) site usage. However, the longitudinal transcriptomic 3' end profile and its mechanism of action are poorly understood. We applied diurnal time-course poly(A) tag sequencing (PAT-seq) for Arabidopsis and identified 3284 genes that generated both rhythmic and arrhythmic transcripts. These two classes of transcripts appear to exhibit dramatic differences in expression and translation activisty. The asynchronized transcripts derived by APA are embedded with different poly(A) signals, especially for rhythmic transcripts, which contain higher AAUAAA and UGUA signal proportions. The Pol II occupancy maximum is reached upstream of rhythmic poly(A) sites, while it is present directly at arrhythmic poly(A) sites. Integrating H3K9ac and H3K4me3 time-course data analyses revealed that transcriptional activation of histone markers may be involved in the differentiation of rhythmic and arrhythmic APA transcripts. These results implicate an interplay between histone modification and RNA 3'-end processing, shedding light on the mechanism of transcription rhythm and alternative polyadenylation.


Subject(s)
Arabidopsis/genetics , Polyadenylation , RNA Processing, Post-Transcriptional , RNA, Messenger/genetics , RNA, Plant/genetics , Transcription, Genetic , Transcriptome
16.
J Integr Plant Biol ; 63(4): 707-722, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33438356

ABSTRACT

Heterochromatin is widespread in eukaryotic genomes and has diverse impacts depending on its genomic context. Previous studies have shown that a protein complex, the ASI1-AIPP1-EDM2 (AAE) complex, participates in polyadenylation regulation of several intronic heterochromatin-containing genes. However, the genome-wide functions of AAE are still unknown. Here, we show that the ASI1 and EDM2 mostly target the common genomic regions on a genome-wide level and preferentially interacts with genetic heterochromatin. Polyadenylation (poly(A) sequencing reveals that AAE complex has a substantial influence on poly(A) site usage of heterochromatin-containing genes, including not only intronic heterochromatin-containing genes but also the genes showing overlap with heterochromatin. Intriguingly, AAE is also involved in the alternative splicing regulation of a number of heterochromatin-overlapping genes, such as the disease resistance gene RPP4. We provided evidence that genic heterochromatin is indispensable for the recruitment of AAE in polyadenylation and splicing regulation. In addition to conferring RNA processing regulation at genic heterochromatin-containing genes, AAE also targets some transposable elements (TEs) outside of genes (including TEs sandwiched by genes and island TEs) for epigenetic silencing. Our results reveal new functions of AAE in RNA processing and epigenetic silencing, and thus represent important advances in epigenetic regulation.


Subject(s)
Epigenesis, Genetic/genetics , Alternative Splicing/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , DNA Transposable Elements/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Heterochromatin/genetics , Polyadenylation/genetics , Polyadenylation/physiology , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
17.
Genome Res ; 30(10): 1407-1417, 2020 10.
Article in English | MEDLINE | ID: mdl-32759225

ABSTRACT

Eukaryotic histone deacetylation, critical for maintaining nucleosome structure and regulating gene expression, is mediated by histone deacetylases (HDACs). Although nucleosomes have been reported to regulate mRNA polyadenylation in humans, the role of HDACs in regulating polyadenylation has not been uncovered. Taking advantage of phenotypic studies on Arabidopsis, HDA6 (one of HDACs) was found to be a critical part of many biological processes. Here, we report that HDA6 affects mRNA polyadenylation in Arabidopsis Poly(A) sites of up-regulated transcripts are closer to the histone acetylation peaks in hda6 compared to the wild-type Col-0. HDA6 is required for the deacetylation of histones around DNA on nucleosomes, which solely coincides with up-regulated or uniquely presented poly(A) sites in hda6 Furthermore, defective HDA6 results in an overrepresentation of the canonical poly(A) signal (AAUAAA) usage. Chromatin loci for generating AAUAAA-type transcripts have a comparatively low H3K9K14ac around poly(A) sites when compared to other noncanonical poly(A) signal-containing transcripts. These results indicate that HDA6 regulates polyadenylation in a histone deacetylation-dependent manner in Arabidopsis.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Histone Deacetylases/metabolism , Histones/metabolism , Polyadenylation , 3' Untranslated Regions , Acetylation , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Histone Acetyltransferases/antagonists & inhibitors , Histone Deacetylases/genetics , Mutation , RNA, Messenger/chemistry
18.
Comput Struct Biotechnol J ; 18: 1012-1019, 2020.
Article in English | MEDLINE | ID: mdl-32382395

ABSTRACT

Alternative polyadenylation (APA) occurs in the process of mRNA maturation by adding a poly(A) tail at different locations, resulting increased diversity of mRNA isoforms and contributing to the complexity of gene regulatory network. Benefit from the development of high-throughput sequencing technologies, we could now delineate APA profiles of transcriptomes at an unprecedented pace. Especially the single cell RNA sequencing (scRNA-seq) technologies provide us opportunities to interrogate biological details of diverse and rare cell types. Despite increasing evidence showing that APA is involved in the cell type-specific regulation and function, efficient and specific laboratory methods for capturing poly(A) sites at single cell resolution are underdeveloped to date. In this review, we summarize existing experimental and computational methods for the identification of APA dynamics from diverse single cell types. A future perspective is also provided.

19.
Plant Cell ; 31(10): 2332-2352, 2019 10.
Article in English | MEDLINE | ID: mdl-31427469

ABSTRACT

A crucial step for mRNA polyadenylation is poly(A) signal recognition by trans-acting factors. The mammalian cleavage and polyadenylation specificity factor (CPSF) complex components CPSF30 and WD repeat-containing protein33 (WDR33) recognize the canonical AAUAAA for polyadenylation. In Arabidopsis (Arabidopsis thaliana), the flowering time regulator FY is the homolog of WDR33. However, its role in mRNA polyadenylation is poorly understood. Using poly(A) tag sequencing, we found that >50% of alternative polyadenylation (APA) events are altered in fy single mutants or double mutants with oxt6 (a null mutant of AtCPSF30), but mutation of the FY WD40-repeat has a stronger effect than deletion of the plant-unique Pro-Pro-Leu-Pro-Pro (PPLPP) domain. fy mutations disrupt AAUAAA or AAUAAA-like poly(A) signal recognition. Notably, A-rich signal usage is suppressed in the WD40-repeat mutation but promoted in PPLPP-domain deficiency. However, fy mutations do not aggravate the altered signal usage in oxt6 Furthermore, the WD40-repeat mutation shows a preference for 3' untranslated region shortening, but the PPLPP-domain deficiency shows a preference for lengthening. Interestingly, the WD40-repeat mutant exhibits shortened primary roots and late flowering with alteration of APA of related genes. Importantly, the long transcripts of two APA genes affected in fy are related to abiotic stress responses. These results reveal a conserved and specific role of FY in mRNA polyadenylation.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Polyadenylation/genetics , RNA 3' Polyadenylation Signals/genetics , RNA, Messenger/genetics , Transcriptome/genetics , mRNA Cleavage and Polyadenylation Factors/genetics , mRNA Cleavage and Polyadenylation Factors/metabolism , 3' Untranslated Regions/genetics , Cleavage And Polyadenylation Specificity Factor/genetics , Flowers/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant/genetics , Gene Ontology , Gene Regulatory Networks , Mutation , Phenotype , Plant Roots/metabolism , Protein Binding , Protein Domains/genetics , WD40 Repeats/genetics
20.
Plant J ; 98(2): 260-276, 2019 04.
Article in English | MEDLINE | ID: mdl-30570805

ABSTRACT

Alternative polyadenylation (APA) is a widespread post-transcriptional mechanism that regulates gene expression through mRNA metabolism, playing a pivotal role in modulating phenotypic traits in rice (Oryza sativa L.). However, little is known about the APA-mediated regulation underlying the distinct characteristics between two major rice subspecies, indica and japonica. Using a poly(A)-tag sequencing approach, polyadenylation (poly(A)) site profiles were investigated and compared pairwise from germination to the mature stage between indica and japonica, and extensive differentiation in APA profiles was detected genome-wide. Genes with subspecies-specific poly(A) sites were found to contribute to subspecies characteristics, particularly in disease resistance of indica and cold-stress tolerance of japonica. In most tissues, differential usage of APA sites exhibited an apparent impact on the gene expression profiles between subspecies, and genes with those APA sites were significantly enriched in quantitative trait loci (QTL) related to yield traits, such as spikelet number and 1000-seed weight. In leaves of the booting stage, APA site-switching genes displayed global shortening of 3' untranslated regions with increased expression in indica compared with japonica, and they were overrepresented in the porphyrin and chlorophyll metabolism pathways. This phenomenon may lead to a higher chlorophyll content and photosynthesis in indica than in japonica, being associated with their differential growth rates and yield potentials. We further constructed an online resource for querying and visualizing the poly(A) atlas in these two rice subspecies. Our results suggest that APA may be largely involved in developmental differentiations between two rice subspecies, especially in leaf characteristics and the stress response, broadening our knowledge of the post-transcriptional genetic basis underlying the divergence of rice traits.


Subject(s)
Genes, Plant/genetics , Oryza/genetics , Oryza/metabolism , Polyadenylation , Acclimatization , Chlorophyll/metabolism , Gene Expression Regulation, Plant , Germination , Phenotype , Photosynthesis , Plant Leaves/genetics , Plant Leaves/metabolism , Quantitative Trait Loci , Seeds , Stress, Physiological , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL