Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.082
Filter
1.
Chem Sci ; 15(30): 11837-11846, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39092101

ABSTRACT

Excellent ethylene selectivity in acetylene semi-hydrogenation is often obtained at the expense of activity. To break the activity-selectivity trade-off, precise control and in-depth understanding of the three-dimensional atomic structure of surfacial active sites are crucial. Here, we designed a novel Au@PdCu core-shell nanocatalyst featuring diluted and stretched Pd sites on the ultrathin shell (1.6 nm), which showed excellent reactivity and selectivity, with 100% acetylene conversion and 92.4% ethylene selectivity at 122 °C, and the corresponding activity was 3.3 times higher than that of the PdCu alloy. The atomic three-dimensional decoding for the activity-selectivity balance was revealed by combining pair distribution function (PDF) and reverse Monte Carlo simulation (RMC). The results demonstrate that a large number of active sites with a low coordination number of Pd-Pd pairs and an average 3.25% tensile strain are distributed on the surface of the nanocatalyst, which perform a pivotal function in the simultaneous improvement of hydrogenation activity and ethylene selectivity. Our work not only develops a novel strategy for unlocking the linear scaling relation in heterogeneous catalysis but also provides a paradigm for atomic 3D understanding of lattice strain in core-shell nanocatalysts.

2.
J Am Chem Soc ; 146(30): 20770-20777, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39039443

ABSTRACT

Exchange bias (EB) is a crucial property with widespread applications but particularly occurs by complex interfacial magnetic interactions after field cooling. To date, intrinsic zero-field-cooled EB (ZEB) has only emerged in a few bulk frustrated systems and their magnitudes remain small yet. Here, enabled by high temperature synthesis, we uncover a colossal ZEB field of 4.95 kOe via tuning compensated ferrimagnetism in a family of kagome metals, which is almost twice the magnitude of known materials. Atomic-scale structure, spin dynamics, and magnetic theory revealed that these compensated ferrimagnets originate from significant antiferromagnetic exchange interactions embedded in the holmium-iron ferrimagnetic matrix due to supersaturated preferential manganese doping. A random antiferromagnetic order of manganese sublattice sandwiched between ferromagnetic iron kagome bilayers accounts for such unconventional pinning. The outcome of the present study outlines disorder-induced giant bulk ZEB and coercivity in layered frustrated systems.

3.
Oncol Lett ; 28(3): 436, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39081967

ABSTRACT

In cancer, tumor-related inflammation affects disease progression and survival outcomes. However, the role of systemic inflammation in tumor multifocality in upper tract urothelial carcinoma (UTUC) is not well understood. The aim of the present study was to evaluate the impact of the systemic inflammation response index (SIRI) on tumor multifocality for predicting oncological outcomes in patients with UTUC after radical nephroureterectomy (RNU). For this purpose, data from 645 patients with non-metastatic UTUC who underwent RNU between 2008 and 2020 were retrospectively analyzed. Survival outcomes such as overall survival (OS), cancer-specific survival (CSS) and recurrence-free survival (RFS) RATES were assessed using the Kaplan-Meier method, and independent prognostic factors were identified through a multivariable Cox proportional hazards regression model. Of the 645 patients with UTUC included in the present study, 163 (25%) had multifocal UTUC. Kaplan-Meier analysis indicated that multifocal UTUC synchronous with a high-level SIRI was significantly associated with poorer outcomes after RNU. Furthermore, the results of the multivariate Cox proportional hazards model analysis demonstrated that multifocal tumor coupled with a high-level SIRI was an independent factor for predicting a shorter survival and disease progression. In conclusion, the results of the present study indicated that an elevated SIRI significantly influenced the survival rate of patients with multifocal UTUC. Specifically, integrating multifocal UTUC with a high-level SIRI emerged as an independent risk factor for poorer OS, CSS and RFS. These findings highlighted the potential role of SIRI in the risk stratification and management of patients with multifocal UTUC.

4.
ChemSusChem ; : e202401070, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984837

ABSTRACT

Renewable chemicals, which are made from renewable resources such as biomass, have attracted significant interest as substitutes for natural gas- or petroleum-derived chemicals to enhance the sustainability of the chemical and petrochemical industries. Polybutylene adipate terephthalate (PBAT), which is a copolyester of 1,4-butanediol (1,4-BDO), adipic acid (AA), and dimethyl terephthalate (DMT) or terephthalic acid (TPA), has garnered significant interest as a biodegradable polymer. This study assesses the non-biological production of PBAT monomers from biomass feedstocks via heterogeneous catalytic reactions. The biomass-based catalytic routes to each monomer are analyzed and compared to conventional routes. Although no fully commercialized catalytic processes for direct conversion of biomass into 1,4-BDO, AA, DMT, and TPA are available, emerging and promising catalytic routes have been proposed. The proposed biomass-based catalytic pathways toward 1,4-BDO, AA, DMT, and TPA are not yet fully competitive with conventional fossil fuel-based pathways mainly due to high feedstock prices and the existence of other alternatives. However, given continuous technological advances in the renewable production of PBAT monomers, bio-based PBAT should be economically viable in the near future.

5.
Mol Biotechnol ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985240

ABSTRACT

Glioma is the most common malignant brain tumor in the central nervous system with the poor prognosis of patients. The CNOT7 (CCR4-NOT Transcription Complex Subunit 7) is an important functional subunit of CCR4-NOT protein complex that has not been reported in glioma. In this study, we aimed to explore the function of CNOT7 in glioma. The TCGA (The Cancer Genome Atlas) and CGGA (Chinese Glioma Genome Atlas) databases were used for investigating the expression and survival condition of CNOT7 in glioma. The cellular function experiments of qRT-PCR, CCK-8 assays, wound healing assays, and Transwell assays were conducted to verify the function of knockdown CNOT7 in the glioma cell lines DBTRG and U251. Enrichment analysis was used to explore the molecular mechanism of CONT7 in glioma. What is more, the upstream regulation transcription factors of CNOT7 were analyzed based on the ChIP-Atlas and cBioportal (provisional) databases, and verified by the qRT-PCR and luciferase reporter assay. The CNOT7 was highly expressed in glioma and presented the poorer prognosis. The knockdown of CNOT7 inhibited the proliferation, migration, and invasion of glioma cell line, compared to control group. The enrichment analysis revealed that the CNOT7 participated in the development of glioma via G2M checkpoint, E2F targets, IL6-JAK-STAT3, and TNF-α signaling pathways via NF-κB. Besides, it was found that the HDAC2 (Human histone deacetylase-2) contributes to increased CNOT7 expression in glioma. The high-expressed CNOT7 is an oncogene with poor prognosis and participate the progression of glioma.

6.
J Colloid Interface Sci ; 675: 275-292, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38970913

ABSTRACT

Azo compounds, particularly azo dyes, are widely used but pose significant environmental risks due to their persistence and potential to form carcinogenic by-products. Advanced oxidation processes (AOPs) are effective in degrading these stubborn compounds, with Oxone activation being a particularly promising method. In this study, a unique nanohybrid material, raspberry-like CuCo alloy embedded carbon (RCCC), is facilely fabricated using CuCo-glycerate (Gly) as a template. With the incorporation of Cu into Co, RCCC is essentially different from its analogue derived from Co-Gly in the absence of Cu, affording a popcorn-like Co embedded on carbon (PCoC). RCCC exhibits a unique morphology, featuring a hollow spherical layer covered by nanoscale beads composed of CuCo alloy distributed over carbon. Therefore, RCCC significantly outperforms PCoC and Co3O4 for activating Oxone to degrade the toxic azo contaminant, Azorubin S (AS), in terms of efficiency and kinetics. Furthermore, RCCC remains highly effective in environments with high NaCl concentrations and can be efficiently reused across multiple cycles. Besides, RCCC also leads to the considerably lower Ea of AS degradation than the reported Ea values by other catalysts. More importantly, the contribution of incorporating Cu with Co as CuCo alloy in RCCC is also elucidated using the Density-Function-Theory (DFT) calculation and synergetic effect of Cu and Co in CuCo contributes to enhance Oxone activation, and boosts generation of SO4•-and •OH. The decomposition pathway of AS by RCCC + Oxone is also comprehensively investigated by studying the Fukui indices of AS and a series of its degradation by-products using the DFT calculation. In accordance to the toxicity assessment, RCCC + Oxone also considerably reduces acute and chronic toxicities to lower potential environmental impact. These results ensure that RCCC would be an advantageous catalyst for Oxone activation to degrade AS in water.

7.
World J Stem Cells ; 16(6): 690-707, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38948095

ABSTRACT

BACKGROUND: The treatment of acute respiratory distress syndrome (ARDS) complicated by sepsis syndrome (SS) remains challenging. AIM: To investigate whether combined adipose-derived mesenchymal-stem-cells (ADMSCs)-derived exosome (EXAD) and exogenous mitochondria (mitoEx) protect the lung from ARDS complicated by SS. METHODS: In vitro study, including L2 cells treated with lipopolysaccharide (LPS) and in vivo study including male-adult-SD rats categorized into groups 1 (sham-operated-control), 2 (ARDS-SS), 3 (ARDS-SS + EXAD), 4 (ARDS-SS + mitoEx), and 5 (ARDS-SS + EXAD + mitoEx), were included in the present study. RESULTS: In vitro study showed an abundance of mitoEx found in recipient-L2 cells, resulting in significantly higher mitochondrial-cytochrome-C, adenosine triphosphate and relative mitochondrial DNA levels (P < 0.001). The protein levels of inflammation [interleukin (IL)-1ß/tumor necrosis factor (TNF)-α/nuclear factor-κB/toll-like receptor (TLR)-4/matrix-metalloproteinase (MMP)-9/oxidative-stress (NOX-1/NOX-2)/apoptosis (cleaved-caspase3/cleaved-poly (ADP-ribose) polymerase)] were significantly attenuated in lipopolysaccharide (LPS)-treated L2 cells with EXAD treatment than without EXAD treatment, whereas the protein expressions of cellular junctions [occluding/ß-catenin/zonula occludens (ZO)-1/E-cadherin] exhibited an opposite pattern of inflammation (all P < 0.001). Animals were euthanized by 72 h post-48 h-ARDS induction, and lung tissues were harvested. By 72 h, flow cytometric analysis of bronchoalveolar lavage fluid demonstrated that the levels of inflammatory cells (Ly6G+/CD14+/CD68+/CD11b/c+/myeloperoxidase+) and albumin were lowest in group 1, highest in group 2, and significantly higher in groups 3 and 4 than in group 5 (all P < 0.0001), whereas arterial oxygen-saturation (SaO2%) displayed an opposite pattern of albumin among the groups. Histopathological findings of lung injury/fibrosis area and inflammatory/DNA-damaged markers (CD68+/γ-H2AX) displayed an identical pattern of SaO2% among the groups (all P < 0.0001). The protein expressions of inflammatory (TLR-4/MMP-9/IL-1ß/TNF-α)/oxidative stress (NOX-1/NOX-2/p22phox/oxidized protein)/mitochondrial-damaged (cytosolic-cytochrome-C/dynamin-related protein 1)/autophagic (beclin-1/Atg-5/ratio of LC3B-II/LC3B-I) biomarkers exhibited a similar manner, whereas antioxidants [nuclear respiratory factor (Nrf)-1/Nrf-2]/cellular junctions (ZO-1/E-cadherin)/mitochondrial electron transport chain (complex I-V) exhibited an opposite manner of albumin among the groups (all P < 0.0001). CONCLUSION: Combined EXAD-mitoEx therapy was better than merely one for protecting the lung against ARDS-SS induced injury.

8.
Front Microbiol ; 15: 1418218, 2024.
Article in English | MEDLINE | ID: mdl-38962121

ABSTRACT

Objectives: To comprehensively analyze the epidemiological features of human papillomavirus (HPV) and HPV-related cervical diseases in females aged 35-64 years. Methods: A total of 149,559 samples of exfoliated cervical cells screened for HPV and related cervical lesions from January 2018 to December 2023 were enrolled. The prevalence of 15 high-risk and 6 low-risk HPV genotypes were detected, and the cervical cytology were analyzed. The impact of single and multiple HPV infections was characterized, and the effect of age was studied. Results: The cervix cytology was normal in 86.60% of the females, while 7.13% of the females were diagnosed with cervix inflammation, 0.60% with ASC-US, 0.22% with ASC-H, 0.72% with LSIL, 0.49% with HSIL, 0.03% with ICC. The highest median age was observed in ASC-H group with 54 years old. Females with primary school education or lower have the highest positive rates. The overall HPV prevalence was 8.60%. The relatively prevalent HPV types were HPV52, 58, 16, 39, 51. HPV16, HPV18, HPV58, HPV33 and HPV52 were the top5 predominant types in ICC patients. 17.41% females suffered from multiple HPV infection with the most frequently co-infection subtypes being HPV52, HPV58 and HPV16. The prevalence of all HPV subtypes increased with age. Multiple HPV infections accounted for a larger proportion in those aged above 55 years. The peak HPV16 prevalence was observed in ICC group in cases aged 45-49 and 55-59. The peak HPV33 prevalence was observed in younger individuals aged 40-44 who developed ICC. Conclusion: More action should be taken against HPV33 infection.

9.
Bioengineering (Basel) ; 11(7)2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39061795

ABSTRACT

INTRODUCTION: A spiral clavicle plate has been accepted for its superior multidirectional compatibility in the treatment of midshaft clavicle fractures from a biomechanical perspective. However, the influence of the sextant angle (spiral level) definition on biomechanical performance has not been clarified. A conceptual finite element analysis was conducted to identify the advantages and drawbacks of spiral clavicle plates with various sextant angle definitions. METHODS: Conventional superior and three different conceptual spiral plates with sextant angle definitions ranging from 45 to 135 degrees were constructed to restore an OTA 15-B1.3 midshaft clavicle fracture model. Three major loading scenarios (cantilever downward bending, axial compression, and axial torsion) were simulated to evaluate the reconstructed structural stiffness and the stress on the clavicle plate and bone screws. RESULTS: The spiral clavicle plate demonstrated greater capability in resisting cantilever downward bending with an increase in sextant angle and showed comparable structural stiffness and implant stress compared to the superior clavicle plate. However, weakened resistance to axial compression load was noted for the spiral clavicle plate, with lowered stiffness and increased stress on the clavicle plate and screws as the spiral level increased. CONCLUSION: The spiral clavicle plate has been reported to offer multidirectional compatibility for the treatment of midshaft clavicle fractures, as well as geometric advantages in anatomical matching and reduced skin prominence after surgery. The current study supports that remarkable cantilever bending strength can be achieved with this plate. However, users must consider the potential drawback of lowered axial compression resistance in safety considerations.

10.
Int J Biol Macromol ; : 134008, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39032879

ABSTRACT

In this study, an active film composed of gallic acid (GA), chitosan (CS), and cellulose nanocrystals (CNC) was prepared using a solution casting method and synergistic photodynamic inactivation (PDI) technology. Characterization of the film showed that the CS-CNC-GA composite film had high transparency and UV-blocking ability. The addition of GA (0.2 %-1.0 %) significantly enhanced the mechanical properties, water resistance, and thermal stability of the film. The tensile strength increased up to 46.30 MPa, and the lowest water vapor permeability was 1.16 × e-12 g/(cm·s·Pa). The PDI-treated CS-CNC-GA1.0 composite film exhibited significantly enhanced antibacterial activity, with inhibition zone diameters of 31.83 mm against Staphylococcus aureus and 21.82 mm against Escherichia coli. The CS-CNC-GA composite film also showed good antioxidant activity. Additionally, the CS-CNC-GA1.0 composite film generated a large amount of singlet oxygen under UV-C light irradiation. It was found that using the CS-CNC-GA1.0 composite film for packaging and storage of oysters at 4 °C effectively delayed the increase in pH, total colony count, and lipid oxidation in oysters. In conclusion, the CS-CNC-GA composite film based on PDI technology has great potential for applications in the preservation of aquatic products.

11.
ACS Appl Mater Interfaces ; 16(28): 36840-36850, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38954505

ABSTRACT

White Roman goose (Anser anser domesticus) feathers, comprised of oriented conical barbules, are coated with gland-secreted preening oils to maintain a long-term nonwetting performance for surface swimming. The geese are accustomed to combing their plumages with flat bills in case they are contaminated with oleophilic substances, during which the amphiphilic saliva spread over the barbules greatly impairs their surface hydrophobicities and allows the trapped contaminants to be anisotropically self-cleaned by water flows. Particularly, the superhydrophobic behaviors of the goose feathers are recovered as well. Bioinspired by the switchable anisotropic self-cleaning functionality of white Roman geese, superhydrophobic unidirectionally inclined conical structures are engineered through the integration of a scalable colloidal self-assembly technology and a colloidal lithographic approach. The dependence of directional sliding properties on the shape, inclination angle, and size of conical structures is systematically investigated in this research. Moreover, their switchable anisotropic self-cleaning functionalities are demonstrated by Sudan blue II/water (0.01%) separation performances. The white Roman goose feather-inspired coatings undoubtedly offer a new concept for developing innovative applications that require directional transportation and the collection of liquids.


Subject(s)
Feathers , Geese , Animals , Feathers/chemistry , Anisotropy , Hydrophobic and Hydrophilic Interactions , Surface Properties , Colloids/chemistry
12.
Article in English | MEDLINE | ID: mdl-39012755

ABSTRACT

We study the domain adaptation task for action recognition, namely domain adaptive action recognition, which aims to effectively transfer action recognition power from a label-sufficient source domain to a label-free target domain. Since actions are performed by humans, it is crucial to exploit human cues in videos when recognizing actions across domains. However, existing methods are prone to losing human cues but prefer to exploit the correlation between non-human contexts and associated actions for recognition, and the contexts of interest agnostic to actions would reduce recognition performance in the target domain. To overcome this problem, we focus on uncovering human-centric action cues for domain adaptive action recognition, and our conception is to investigate two aspects of human-centric action cues, namely human cues and human-context interaction cues. Accordingly, our proposed Human-Centric Transformer (HCTransformer) develops a decoupled human-centric learning paradigm to explicitly concentrate on human-centric action cues in domain-variant video feature learning. Our HCTransformer first conducts human-aware temporal modeling by a human encoder, aiming to avoid a loss of human cues during domain-invariant video feature learning. Then, by a Transformer-like architecture, HCTransformer exploits domain-invariant and action-correlated contexts by a context encoder, and further models domain-invariant interaction between humans and action-correlated contexts. We conduct extensive experiments on three benchmarks, namely UCF-HMDB, Kinetics-NecDrone and EPIC-Kitchens-UDA, and the state-of-the-art performance demonstrates the effectiveness of our proposed HCTransformer.

14.
Front Biosci (Landmark Ed) ; 29(7): 263, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39082363

ABSTRACT

BACKGROUND: Telomere shortening is strongly associated with cardiovascular aging and disease, and patients with shorter telomeres in peripheral blood leukocytes are at higher risk of cardiovascular diseases such as heart failure and atrial fibrillation (AF). Telomerase reverse transcriptase (TERT) maintains telomere length, and overexpression of TERT has been shown to reduce cardiomyocyte apoptosis and myocardial infarct size, and extend the lifespan of aged mice. However, the specific impact of TERT on the electrophysiology of cardiomyocytes remains to be elucidated. The aims of this study were to evaluate the role of TERT in Ca2+ homeostasis and mitochondrial function in atrial myocytes as well as the underlying mechanisms. METHODS: TERT overexpressed and silenced HL-1 cells were constructed with lentiviruses, and the respective empty lentiviral vectors were used as negative controls. Then the patch clamp technique was used to record the electrophysiological characteristics such as cell action potential duration (APD) and L-type Ca2+ currents (ICa,L), flow cytometry was used to detect intracellular Ca2+ concentration and mitochondrial membrane potential (MMP), and the Seahorse assay was used to measure the oxygen consumption rate (OCR). RESULTS: TERT silencing led to intracellular Ca2+ overload, shortened APD, decreased ICa,L current density, altered Ca2+ gating mechanism, decreased MMP and OCR, and increased reactive oxygen species (ROS), whereas TERT overexpression led to the reverse effects. Additionally, TERT silencing resulted in intracellular Ca2+ overload with decreased expression of the SERCA2a, CaV1.2, and NCX1.1, whereas TERT overexpression had opposing effects. Furthermore, we discovered that TERT could regulate the expression of p53 and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). The expression of PGC-1α was downregulated by the p53 agonist Tenovin-6 but upregulated by the p53 inhibitor PFTα. The effects of the PGC-1α inhibitor SR-18292 on intracellular Ca2+ and cell electrophysiology were similar to those of silencing TERT, whereas the PGC-1α agonist ZLN005 produced comparable outcomes to TERT overexpression. CONCLUSIONS: TERT silencing-induced Ca2+ overload and mitochondrial dysfunction may be one mechanism of age-related AF. Overexpression of TERT reduced the basis for arrhythmia formation such as AF, suggesting a favorable safety profile for TERT therapy. TERT regulated intracellular Ca2+ homeostasis and mitochondrial function through the p53/PGC-1α pathway. In addition, PGC-1α might be a novel target for AF, suggesting that intervention for AF should be not limited to abnormal cation handling.


Subject(s)
Calcium , Homeostasis , Membrane Potential, Mitochondrial , Myocytes, Cardiac , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Telomerase , Tumor Suppressor Protein p53 , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Animals , Calcium/metabolism , Mice , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Telomerase/metabolism , Telomerase/genetics , Myocytes, Cardiac/metabolism , Cell Line , Mitochondria/metabolism , Action Potentials , Signal Transduction
15.
J Hazard Mater ; 476: 135079, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38959835

ABSTRACT

Dinoflagellates Prorocentrum donghaiense and Karlodinium veneficum are the dominant species of harmful algal blooms in the East China Sea. The role of their allelopathy on the succession of marine phytoplankton populations is a subject of ongoing debate, particularly concerning the formation of blooms. To explore the allelopathy of K. veneficum on P. donghaiense, an investigation was conducted into photosynthetic performance (including PSII functional activities, photosynthetic electron transport chain, energy flux, photosynthetic different genes and photosynthetic performance) and photosynthetic damage-induced oxidative stress (MDA, SOD, and CAT activity). The growth of P. donghaiense was strongly restrained during the initial four days (1-6 folds, CK/CP), but the cells gradually resumed activity at low filtrate concentrations from the eighth day. On the fourth day of the strongest inhibition, allelochemicals reduced representative photosynthetic performance parameters PI and ΦPSII, disrupted related processes of photosynthesis, and elevated the levels of MDA content in P. donghaiense. Simultaneously, P. donghaiense repairs these impairments by up-regulating the expression of 13 photosynthetic genes, modifying photosynthetic processes, and activating antioxidant enzyme activities from the eighth day onward. Overall, this study provides an in-depth overview of allelopathic photosynthetic damage, the relationship between genes and photosynthesis, and the causes of oxidative damage induced by photosynthesis. ENVIRONMENTAL IMPLICATIONS: As a typical HAB species, Karlodinium veneficum is associated with numerous fish poisoning events, which have negative impacts on aquatic ecosystems and human health. Allelochemicals produced by K. veneficum can provide a competitive advantage by interfering with the survival, reproduction and growth of competing species. This study primarily investigated the effects of K. veneficum allelochemicals on the photosynthesis and photosynthetic genes of Prorocentrum donghaiense. Grasping the mechanism of allelochemicals inhibiting microalgae is helpful to better understand the succession process of algal blooms and provide a new scientific basis for effective prevention and control of harmful algal blooms.


Subject(s)
Allelopathy , Dinoflagellida , Harmful Algal Bloom , Photosynthesis , Dinoflagellida/drug effects , Dinoflagellida/metabolism , Photosynthesis/drug effects , Oxidative Stress/drug effects , Pheromones , China
16.
Sci Adv ; 10(30): eadl3693, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39058768

ABSTRACT

We report a catalyst family of high-entropy alloy (HEA) atomic layers having three elements from iron-group metals (IGMs) and two elements from platinum-group metals (PGMs). Ten distinct quinary compositions of IGM-PGM-HEA with precisely controlled square atomic arrangements are used to explore their impact on hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR). The PtRuFeCoNi atomic layers perform enhanced catalytic activity and durability toward HER and HOR when benchmarked against the other IGM-PGM-HEA and commercial Pt/C catalysts. Operando synchrotron x-ray absorption spectroscopy and density functional theory simulations confirm the cocktail effect arising from the multielement composition. This effect optimizes hydrogen-adsorption free energy and contributes to the remarkable catalytic activity observed in PtRuFeCoNi. In situ electron microscopy captures the phase transformation of metastable PtRuFeCoNi during the annealing process. They transform from random atomic mixing (25°C), to ordered L10 (300°C) and L12 (400°C) intermetallic, and finally phase-separated states (500°C).

17.
Sci Adv ; 10(30): eadl4694, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39047090

ABSTRACT

The transitioning of neural stem cells (NSCs) between quiescent and proliferative states is fundamental for brain development and homeostasis. Defects in NSC reactivation are associated with neurodevelopmental disorders. Drosophila quiescent NSCs extend an actin-rich primary protrusion toward the neuropil. However, the function of the actin cytoskeleton during NSC reactivation is unknown. Here, we reveal the fine filamentous actin (F-actin) structures in the protrusions of quiescent NSCs by expansion and super-resolution microscopy. We show that F-actin polymerization promotes the nuclear translocation of myocardin-related transcription factor, a microcephaly-associated transcription factor, for NSC reactivation and brain development. F-actin polymerization is regulated by a signaling cascade composed of G protein-coupled receptor Smog, G protein αq subunit, Rho1 guanosine triphosphatase, and Diaphanous (Dia)/Formin during NSC reactivation. Further, astrocytes secrete a Smog ligand folded gastrulation to regulate Gαq-Rho1-Dia-mediated NSC reactivation. Together, we establish that the Smog-Gαq-Rho1 signaling axis derived from astrocytes, an NSC niche, regulates Dia-mediated F-actin dynamics in NSC reactivation.


Subject(s)
Actins , Astrocytes , Drosophila Proteins , Neural Stem Cells , Receptors, G-Protein-Coupled , Signal Transduction , Animals , Actins/metabolism , Astrocytes/metabolism , Receptors, G-Protein-Coupled/metabolism , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Actin Cytoskeleton/metabolism , Drosophila melanogaster/metabolism , rho GTP-Binding Proteins/metabolism
18.
Inorg Chem ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39072372

ABSTRACT

Interfacial strain engineering can induce structural transformation and introduce new physical properties into materials, which is an effective method to prepare new multifunctional materials. However, interfacial strain has a limited spatial impact size. For example, in 2D thin films, the critical thickness of biaxial strain is typically less than 20 nm, which is not conducive to the maintenance of a strained structure and properties in thick film materials. The construction of a 3D interface can solve this problem. The large lattice mismatch between the BaZrO3 thin film and the substrate can induce the out-of-phase boundary (OPB) structure, which can extend along the thickness direction with the stacking of atoms. The lattice distortion at the OPB structure can provide a clamping effect for each layer of atoms, thus expanding the spatial influence range of biaxial strain. As a result, the uniform in-plane strain distribution and strain-induced ferroelectricity (Pr = 13 µC/cm2) are maintained along the thickness direction in BaZrO3 films.

19.
Nutrients ; 16(14)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39064717

ABSTRACT

Diabetic retinopathy (DR), which can cause vision loss, may progress faster with poor glycemic control and oxidative stress. This study aims to examine how dietary patterns and glycemic control biomarkers relate to retinopathy risk in type 2 diabetes patients. In this study, we enrolled diabetic patients with retinopathy (DR) (n = 136) and without retinopathy (no DR) (n = 466) from a cohort of participants in the "Blood Pressure Control to Reduce the Risk of Type 2 Diabetic Nephropathy Study". Hemoglobin A1c (HbA1c) and malondialdehyde were defined as elevated when their levels reached ≥8.5% and ≥2/3 (16.2 µm), respectively. Dietary data were collected by a food frequency questionnaire. Dietary patterns were identified by factor analysis. Elevated HbA1c was significantly correlated with increased risk of DR (OR: 2.12, 95% CI: 1.14-3.93, p = 0.017). In subjects with a high animal protein and processed food dietary pattern (≥highest tertile score) or a low vegetable intake pattern (

Subject(s)
Biomarkers , Diabetes Mellitus, Type 2 , Diabetic Retinopathy , Diet , Glycated Hemoglobin , Glycemic Control , Humans , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Male , Diabetic Retinopathy/etiology , Diabetic Retinopathy/epidemiology , Diabetic Retinopathy/blood , Female , Middle Aged , Biomarkers/blood , Glycated Hemoglobin/analysis , Glycated Hemoglobin/metabolism , Diet/adverse effects , Risk Factors , Aged , Malondialdehyde/blood , Blood Glucose/metabolism , Feeding Behavior , Dietary Patterns
20.
Zool Res ; 45(4): 781-790, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38894521

ABSTRACT

Precise targeting of specific regions within the central nervous system (CNS) is crucial for both scientific research and gene therapy in the context of brain diseases. Adeno-associated virus 13 (AAV13) is known for its restricted diffusion range within the CNS, making it an ideal choice for precise labeling and administration within small brain regions. However, AAV13 mediates relatively low expression of target genes. Here, we introduced specifically engineered modifications to the AAV13 capsid protein to enhance its transduction efficiency. We first constructed AAV13-YF by mutating tyrosine to phenylalanine on the surface of the AAV13 capsid. We then inserted the 7m8 peptide, known to enhance cell transduction, into positions 587/588 and 585/586 of the AAV13 capsid, resulting in two distinct variants named AAV13-587-7m8 and AAV13-585-7m8, respectively. We found that AAV13-YF exhibited superior in vitro infectivity in HEK293T cells compared to AAV13, while AAV13-587-7m8 and AAV13-585-7m8 showed enhanced CNS infection capabilities in C57BL/6 mice, with AAV13-587-7m8 infection retaining a limited spread range. These modified AAV13 variants hold promising potential for applications in gene therapy and neuroscience research.


Subject(s)
Dependovirus , Mice, Inbred C57BL , Dependovirus/genetics , Animals , Humans , Mice , HEK293 Cells , Transduction, Genetic , Capsid Proteins/genetics , Capsid Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL