Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters








Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 10: 1057904, 2022.
Article in English | MEDLINE | ID: mdl-36466342

ABSTRACT

Hydrogel-based tissue engineering has been widely used to repair cartilage injury. However, whether this approach can be applied to treat nasal septum cartilage defects remains unclear. In this study, three gelatin methacrylate-based scaffolds loaded with transforming growth factor (TGF)-ß1 (GelMA-T) were prepared, and their effects on repair of nasal septum cartilage defects were examined. In vitro, the GelMA-T scaffolds showed good biocompatibility and promoted the chondrogenic differentiation of bone mesenchymal stem cells. Among three scaffolds, the 10% GelMA-T scaffold promoted chondrogenic differentiation most effectively, which significantly improved the expression of chondrocyte-related genes, including Col II, Sox9, and ACAN. In vivo, 10% GelMA-T scaffolds and 10% GelMA-T scaffolds loaded with bone mesenchymal stem cells (BMSCs; 10% GelMA-T/BMSCs) were transplanted into a nasal septum cartilage defect site in a rabbit model. At 4, 12, and 24 weeks after surgery, the nasal septum cartilage defects exhibited more complete repair in rabbits treated with the 10% GelMA-T/BMSC scaffold as demonstrated by hematoxylin & eosin, safranine-O, and toluidine blue staining. We showed that GelMA-T/BMSCs can be applied in physiological and structural repair of defects in nasal septum cartilage, providing a potential strategy for repairing cartilage defects in the clinic.

2.
Oxid Med Cell Longev ; 2022: 2030818, 2022.
Article in English | MEDLINE | ID: mdl-35602099

ABSTRACT

Physical exercise is recommended as a preventative approach for osteoporosis; however, the effect of physical exercise on bone mass remains controversial. Additionally, the immune regulation of physical exercise on bone mass remains unclear. To determine whether wheel-running (WR) exercise contributes to improving bone mineral density (BMD) and investigate the involved immune mechanism, ovariectomized (OVX) and sham-operated mice were treated with 8 weeks of WR exercise. The distal femurs of the mice were sequentially scanned, reconstructed, and analyzed using microcomputed tomography and related software to assess BMD and bone microarchitecture. Flow cytometry assays were applied to investigate alterations in immune cells and inflammatory cytokines. In vitro, osteoclast differentiation was conducted to determine the effect of IFN-γ on osteoclastogenesis and the underlying mechanism. As a result, trabecular parameters were decreased in the OVX mice compared with the sham group. However, WR exercise significantly improved the deterioration in the bone microarchitecture of the OVX mice with an increase of 60.00% in BMD, 55.18% in bone volume, 66.67% in trabecular number, 32.52% in trabecular thickness, and a decrease of 19.44% in trabecular separation. Similarly, WR exercise increased the proportion of CD8+ T cells from 7.26 ± 1.71% to 10.23 ± 1.35% in the spleen and from 1.62 ± 0.54% to 2.38 ± 0.43% in the bone marrow of the OVX mice (P < 0.05). The expression of IFN-γ was also increased in the OVX + WR mice compared with the OVX mice (1.65 ± 0.45% vs. 2.26 ± 0.34%, P < 0.05). In vitro studies demonstrated an inhibitory effect of IFN-γ on osteoclastogenesis in a dose- and time-dependent manner. Meanwhile, the classical NF-κB and MAPK pathways were found to be critical in IFN-γ-mediated inhibition of osteoclast differentiation. In conclusion, our study discovered that WR exercise rescued bone loss in the OVX mice in an IFN-γ-mediated immunomodulatory manner. After WR exercise, IFN-γ expression was restored by activated CD8+ T cells, consequently leading to the inhibition of osteoclastogenesis and the recovery from bone loss through the NF-κB and MAPK pathways.


Subject(s)
Bone Diseases, Metabolic , NF-kappa B , Physical Conditioning, Animal , Animals , Bone Density , Bone Diseases, Metabolic/prevention & control , CD8-Positive T-Lymphocytes/metabolism , Female , MAP Kinase Signaling System , Mice , NF-kappa B/metabolism , Ovariectomy , X-Ray Microtomography
3.
Bioact Mater ; 9: 1-14, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34820551

ABSTRACT

Upon the osteoporotic condition, sluggish osteogenesis, excessive bone resorption, and chronic inflammation make the osseointegration of bioinert titanium (Ti) implants with surrounding bone tissues difficult, often lead to prosthesis loosening, bone collapse, and implant failure. In this study, we firstly designed clickable mussel-inspired peptides (DOPA-N3) and grafted them onto the surfaces of Ti materials through robust catechol-TiO2 coordinative interactions. Then, two dibenzylcyclooctyne (DBCO)-capped bioactive peptides RGD and BMP-2 bioactive domain (BMP-2) were clicked onto the DOPA-N3-coated Ti material surfaces via bio-orthogonal reaction. We characterized the surface morphology and biocompatibility of the Ti substrates and optimized the osteogenic capacity of Ti surfaces through adjusting the ideal ratios of BMP-2/RGD at 3:1. In vitro, the dual-functionalized Ti substrates exhibited excellent promotion on adhesion and osteogenesis of mesenchymal stem cells (MSCs), and conspicuous immunopolarization-regulation to shift macrophages to alternative (M2) phenotypes and inhibit inflammation, as well as enhancement of osseointegration and mechanical stability in osteoporotic rats. In summary, our biomimetic surface modification strategy by bio-orthogonal reaction provided a convenient and feasible method to resolve the bioinertia and clinical complications of Ti-based implants, which was conducive to the long-term success of Ti implants, especially in the osteoporotic or inflammatory conditions.

SELECTION OF CITATIONS
SEARCH DETAIL