Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 171
Filter
1.
Apoptosis ; 2024 Oct 12.
Article in English | MEDLINE | ID: mdl-39395083

ABSTRACT

Triple-negative breast cancer (TNBC) presents a significant challenge for treatment due to its aggressive nature and the lack of effective therapies. This study developed dual inhibitors against cell division cycle 25 (CDC25) and histone deacetylases (HDACs) for TNBC treatment. CDC25 phosphatases are crucial for activating cyclin-dependent kinases (CDKs), the master regulators of cell cycle progression. HDACs regulate various biological processes by deacetylating histone and non-histone proteins, affecting gene expression, chromatin structure, cell differentiation, and proliferation. Dysregulations of HDAC and CDC25 are associated with several human malignancies. We generated a group of dual inhibitors for CDC25 and HDAC by combining the molecular structures of CDC25 (quinoline-5,8-dione) and HDAC (hydroxamic acid or benzamide) pharmacophores. The newly developed compounds were evaluated against various solid-tumor, leukemia, and non-malignant breast epithelial cells. Among the synthesized compounds, 18A emerged as a potent inhibitor, demonstrating significant cytotoxicity against TNBC cells, superior to its effects on other cancer types while sparing non-malignant cells. 18A possessed similar HDAC inhibitory activity as MS-275 and potently suppressed CDC25 activity in vitro and the CDK1 dephosphorylation in cells. Additionally, 18A hindered the progression of S and G2/M phases, triggered DNA damage, and induced apoptosis. These findings underscore the potential of 18A as a targeted therapy for TNBC and warrants further preclinical development.

2.
Eur J Med Chem ; 278: 116801, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39241481

ABSTRACT

The rational installation of pharmacophores targeting HSP90 and LSD1 axes has achieved significant anti-cancer capacity in prostate and colorectal cancer. Among the series of hybrids, inhibitor 6 exhibited remarkable anti-proliferative activity against prostate cancer cell lines PC-3 and DU145, with GI50 values of 0.24 and 0.30 µM, respectively. It demonstrated notable efficacy in combinatorial attack and cell death initiation towards apoptosis. The cell death process was mediated by PARP induction and γH2AX signaling, and was also characterized as caspase-dependent and Bcl-xL/Bax-independent. Notably, no difference in eye size or morphology was observed in the zebrafish treated with compound 6 compared to the reference group (AUY922). The profound treatment response in docetaxel-resistant PC-3 cells highlighted the dual inhibitory ability in improving docetaxel sensitivity. Additionally, at a minimum concentration of 1.25 µM, compound 6 effectively inhibited the growth of patient-derived colorectal cancer (CRC) organoids for up to 10 days in vitro. Together, the designed HSP90/LSD1 inhibitors present a novel route and significant clinical value for anti-cancer drug therapy.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Colorectal Neoplasms , Drug Screening Assays, Antitumor , HSP90 Heat-Shock Proteins , Histone Demethylases , Organoids , Prostatic Neoplasms , Animals , Humans , Male , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Dose-Response Relationship, Drug , Histone Demethylases/antagonists & inhibitors , Histone Demethylases/metabolism , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/metabolism , Molecular Structure , Organoids/drug effects , Organoids/pathology , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Structure-Activity Relationship , Zebrafish
3.
J Med Chem ; 67(19): 17207-17225, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-39320444

ABSTRACT

Precedential evidence ascertaining the overexpression of LSD1 and HDACs in colorectal cancer spurred us to design a series of dual LSD1-HDAC inhibitors. Capitalizing on the modular nature of the three-component HDAC inhibitory model, tranylcypromine as a surface recognition motif was appended to zinc-binding motifs via diverse linkers. A compendium of hydroxamic acids was generated and evaluated for in vitro cytotoxicity against HCT-116 cells (human colorectal cancer cell lines). The most potent cell growth inhibitor 2 (GI50 = 0.495 µMm HCT-116 cells) shows promising anticancer effects by reducing colony formation and inducing cell cycle arrest in HCT-116 cells. It exhibits preferential inhibition of HDAC6, along with potent inhibition of LSD1 compared to standard inhibitors. Moreover, Compound 2 upregulates acetyl-tubulin, acetyl-histone H3, and H3K4me2, indicative of LSD1 and HDAC inhibition. In vivo, it demonstrates significant antitumor activity against colorectal cancer, better than irinotecan, and effectively inhibits growth in patient-derived CRC organoids.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Histone Deacetylase Inhibitors , Histone Demethylases , Organoids , Humans , Histone Demethylases/antagonists & inhibitors , Histone Demethylases/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/chemistry , Animals , Organoids/drug effects , Organoids/metabolism , Organoids/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Structure-Activity Relationship , Mice , HCT116 Cells , Drug Screening Assays, Antitumor , Hydroxamic Acids/pharmacology , Hydroxamic Acids/chemical synthesis , Hydroxamic Acids/chemistry , Mice, Nude , Histone Deacetylases/metabolism
4.
Eur J Med Chem ; 279: 116866, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39293244

ABSTRACT

Attempts to furnish antitumor structural templates that can prevent the occurrence of drug-induced hyperuricemia spurred us to generate xanthine oxidase inhibitor-based hydroxamic acids and anilides. Specifically, the design strategy involved the insertion of febuxostat (xanthine oxidase inhibitor) as a surface recognition part of the HDAC inhibitor pharmacophore model. Investigation outcomes revealed that hydroxamic acid 4 elicited remarkable antileukemic effects mediated via HDAC isoform inhibition. Delightfully, the adduct retained xanthine oxidase inhibitory activity, though xanthine oxidase inhibition was not the underlying mechanism of its cell growth inhibitory effects. Also, compound 4 demonstrated significant in-vivo anti-hyperuricemic (PO-induced hyperuricemia model) and antitumor activity in an HL-60 xenograft mice model. Compound 4 was conjugated with poly (ethylene glycol) poly(aspartic acid) block copolymer to furnish pH-responsive nanoparticles (NPs) in pursuit of circumventing its cytotoxicity towards the normal cell lines. SEM analysis revealed that NPs had uniform size distributions, while TEM analysis ascertained the spherical shape of NPs, indicating their ability to undergo self-assembly. HDAC inhibitor 4 was liberated from the matrix due to the polymeric nanoformulation's pH-responsiveness, and the NPs demonstrated selective cancer cell targeting ability.

5.
Bioorg Chem ; 153: 107771, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39299178

ABSTRACT

Disruptor of telomeric silencing 1-like (DOT1L) is a key hub in histone lysine methyltransferase and an attractive therapeutic target for treating hematological malignancies including acute myeloid leukemia (AML). In this study, we report the design and synthesis of a new series of adenosine derivatives as DOT1L inhibitors by accommodating a basic linker piperidine-4-ylmethyl motif to respective aryl-urea/benzimidazole scaffolds. The anti-DOT1L enzyme activity analysis demonstrated that compounds 8, 12, and 13 strongly suppressed DOT1L activity with IC50 values ranging from 0.125 to 0.408 µM among all the synthetics, and the structure-activity relationships were summarized. Moreover, compound 12 possessed relatively potent DOT1L inhibitory activity by significantly reduced histone H3 di-methylation at lysine 79 (H3K79me2) level in cells. Subsequently, all the synthetics were screened against various leukemia cell lines, indicating the DOT1L active adenosine derivatives exhibited low to moderate while compound 15 showed strong cellular inhibition despite its unsuccessful DOT1L inhibition. Therefore, acknowledging the distinctive potency of compound 15 against five different leukemia cell lines, including MLL-r (MV4-11) and non-MLL-r cell lines (HL-60, HH, K562, and KG-1), with IC50 values in the 0.45 ∼ 1.66 µM range and its mode of action was explored. Furthermore, compound 15 hindered histone acetylation, induced remarkable DNA damage, and triggered apoptosis. Importantly, normal T lymphocytes only showed moderate response to compound 15. These findings provide a basis for future studies on its potential application against AML.

6.
Eur J Pharmacol ; 977: 176711, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38839029

ABSTRACT

Histone deacetylase (HDAC) inhibitors are potential candidates for treating pulmonary fibrosis. MPT0E028, a novel pan-HDAC inhibitor, has been reported to exhibit antitumor activity in several cancer cell lines. In this study, we investigated the mechanism underlying the inhibitory effects of MPT0E028 on the expression of fibrogenic proteins in human lung fibroblasts (WI-38). Our results revealed that MPT0E028 inhibited transforming growth factor-ß (TGF-ß)-, thrombin-, and endothelin 1-induced connective tissue growth factor (CTGF) expression in a concentration-dependent manner. In addition, MPT0E028 suppressed TGF-ß-stimulated expression of fibronectin, collagen I, and α-smooth muscle actin (α-SMA). Furthermore, MPT0E028 inhibited the TGF-ß-induced phosphorylation of c-Jun N-terminal kinase (JNK), p38, and extracellular signal-regulated kinase (ERK). MPT0E028 reduced the increase in SMAD3 and c-Jun phosphorylation, and SMAD3-and activator protein-1 (AP-1)-luciferase activities under TGF-ß stimulation. Transfection with mitogen-activated protein kinase phosphatase-1 (MKP-1) siRNA reversed the suppressive effects of MPT0E028 on TGF-ß-induced increases in CTGF expression; JNK, p38, and ERK phosphorylation; and SMAD3 and AP-1 activation. Moreover, MPT0E028 increased MKP-1 acetylation and activity in WI-38 cells. Pretreatment with MPT0E028 reduced the fibrosis score and fibronectin, collagen, and α-SMA expression in bleomycin-induced pulmonary fibrosis mice. In conclusion, MPT0E028 induced MKP-1 acetylation and activation, which in turn inhibited TGF-ß-stimulated JNK, p38, and ERK phosphorylation; SMAD3 and AP-1 activation; and subsequent CTGF expression in human lung fibroblasts. Thus, MPT0E028 may be a potential drug for treating pulmonary fibrosis.


Subject(s)
Connective Tissue Growth Factor , Dual Specificity Phosphatase 1 , Fibroblasts , Histone Deacetylase Inhibitors , Lung , Pulmonary Fibrosis , Transforming Growth Factor beta , Connective Tissue Growth Factor/metabolism , Humans , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/drug therapy , Animals , Histone Deacetylase Inhibitors/pharmacology , Mice , Lung/drug effects , Lung/pathology , Lung/cytology , Lung/metabolism , Transforming Growth Factor beta/metabolism , Dual Specificity Phosphatase 1/metabolism , Dual Specificity Phosphatase 1/genetics , Cell Line , Smad3 Protein/metabolism , Phosphorylation/drug effects , Male , Enzyme Activation/drug effects , Mice, Inbred C57BL
7.
Eur J Med Chem ; 273: 116507, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38776806

ABSTRACT

Careful recruitment of the components of the HDAC inhibitory template culminated in veliparib-based anilide 8 that elicited remarkable cell growth inhibitory effects against HL-60 cell lines mediated via dual modulation of PARP [(IC50 (PARP1) = 0.02 nM) and IC50 (PARP2) = 1 nM)] and HDACs (IC50 value = 0.05, 0.147 and 0.393 µM (HDAC1, 2 and 3). Compound 8 downregulated the expression levels of signatory biomarkers of PARP and HDAC inhibition. Also, compound 8 arrested the cell cycle at the G0/G1 phase and induced autophagy. Polymer nanoformulation (mPEG-PCl copolymeric micelles loaded with compound 8) was prepared by the nanoprecipitation technique. The mPEG-PCL diblock copolymer was prepared by ring-opening polymerization method using stannous octoate as a catalyst. The morphology of the compound 8@mPEG-PCL was examined using TEM and the substance was determined to be monodispersed, spherical in form, and had an average diameter of 138 nm. The polymer nanoformulation manifested pH-sensitive behaviour as a greater release of compound 8 was observed at 6.2 pH as compared to 7.4 pH mimicking physiological settings. The aforementioned findings indicate that the acidic pH of the tumour microenvironment might stimulate the nanomedicine release which in turn can attenuate the off-target effects precedentially claimed to be associated with HDAC inhibitors.


Subject(s)
Antineoplastic Agents , Benzimidazoles , Cell Proliferation , Drug Design , Drug Screening Assays, Antitumor , Polyethylene Glycols , Humans , Hydrogen-Ion Concentration , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Benzimidazoles/chemical synthesis , Cell Proliferation/drug effects , Polyethylene Glycols/chemistry , HL-60 Cells , Nanoparticles/chemistry , Molecular Structure , Micelles , Structure-Activity Relationship , Dose-Response Relationship, Drug , Polyesters/chemistry , Polyesters/pharmacology , Polyesters/chemical synthesis , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemical synthesis , Polymers/chemistry , Polymers/pharmacology , Polymers/chemical synthesis
8.
Cancer Lett ; 586: 216666, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38311053

ABSTRACT

Glioblastoma (GBM) is a highly aggressive and treatment-resistant brain tumor, necessitating novel therapeutic strategies. In this study, we present a mechanistic breakthrough by designing and evaluating a series of abiraterone-installed hydroxamic acids as potential dual inhibitors of CYP17A1 and HDAC6 for GBM treatment. We established the correlation of CYP17A1/HDAC6 overexpression with tumor recurrence and temozolomide resistance in GBM patients. Compound 12, a dual inhibitor, demonstrated significant anti-GBM activity in vitro, particularly against TMZ-resistant cell lines. Mechanistically, compound 12 induced apoptosis, suppressed recurrence-associated genes, induced oxidative stress and initiated DNA damage response. Furthermore, molecular modeling studies confirmed its potent inhibitory activity against CYP17A1 and HDAC6. In vivo studies revealed that compound 12 effectively suppressed tumor growth in xenograft and orthotopic mouse models without inducing significant adverse effects. These findings highlight the potential of dual CYP17A1 and HDAC6 inhibition as a promising strategy for overcoming treatment resistance in GBM and offer new hope for improved therapeutic outcomes.


Subject(s)
Androstenes , Brain Neoplasms , Glioblastoma , Steroid 17-alpha-Hydroxylase , Animals , Humans , Mice , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Line, Tumor , DNA Damage , Drug Resistance, Neoplasm , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/pathology , Histone Deacetylase 6/genetics , Hydroxamic Acids/pharmacology , Hydroxamic Acids/therapeutic use , Neoplasm Recurrence, Local/drug therapy , Oxidative Stress , Temozolomide/pharmacology , Temozolomide/therapeutic use , Xenograft Model Antitumor Assays
9.
J Med Chem ; 67(4): 2963-2985, 2024 02 22.
Article in English | MEDLINE | ID: mdl-38285511

ABSTRACT

Structural analysis of tazemetostat, an FDA-approved EZH2 inhibitor, led us to pinpoint a suitable site for appendage with a pharmacophoric fragment of second-generation HSP90 inhibitors. Resultantly, a magnificent dual EZH2/HSP90 inhibitor was pinpointed that exerted striking cell growth inhibitory efficacy against TMZ-resistant Glioblastoma (GBM) cell lines. Exhaustive explorations of chemical probe 7 led to several revelations such as (i) compound 7 increased apoptosis/necrosis-related gene expression, whereas decreased M phase/kinetochore/spindle-related gene expression as well as CENPs protein expression in Pt3R cells; (ii) dual inhibitor 7 induced cell cycle arrest at the M phase; (iii) compound 7 suppressed reactive oxygen species (ROS) catabolism pathway, causing the death of TMZ-resistant GBM cells; and (iv) compound 7 elicited substantial in vivo anti-GBM efficacy in experimental mice xenografted with TMZ-resistant Pt3R cells. Collectively, the study results confirm the potential of dual EZH2-HSP90 inhibitor 7 as a tractable anti-GBM agent.


Subject(s)
Antineoplastic Agents , Brain Neoplasms , Glioblastoma , Animals , Mice , Temozolomide/pharmacology , Apoptosis , Drug Resistance, Neoplasm , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Glioblastoma/metabolism , Enzyme Inhibitors/pharmacology , Brain Neoplasms/drug therapy
10.
Chembiochem ; 25(3): e202300744, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38055188

ABSTRACT

Hirudins, natural sulfo(glyco)proteins, are clinical anticoagulants that directly inhibit thrombin, a key coagulation factor. Their potent thrombin inhibition primarily results from antagonistic interactions with both the catalytic and non-catalytic sites of thrombin. Hirudins often feature sulfate moieties on Tyr residues in their anionic C-terminus region, enabling strong interactions with thrombin exosite-I and effectively blocking its engagement with fibrinogen. Although sulfotyrosines have been identified in various hirudin variants, the precise relationship between sulfotyrosine and the number of negatively charged amino acids within the anionic-rich C-terminus peptide domain for the binding of thrombin has remained elusive. By using Fmoc-SPPS, hirudin dodecapeptides homologous to the C-terminus of hirudin variants from various leech species were successfully synthesized, and the effect of sulfotyrosine and the number of negatively charged amino acids on hirudin-thrombin interactions was investigated. Our findings did not reveal any synergistic effect between an increasing number of sulfotyrosines or negatively charged amino acids and their inhibitory activity on thrombin or fibrinolysis in the assays, despite a higher binding level toward thrombin in the sulfated dodecapeptide Hnip_Hirudin was observed in SPR analysis.


Subject(s)
Hirudins , Thrombin , Tyrosine/analogs & derivatives , Hirudins/pharmacology , Hirudins/chemistry , Hirudins/metabolism , Amino Acids , Peptides/pharmacology , Binding Sites
11.
J Enzyme Inhib Med Chem ; 38(1): 2276665, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37919954

ABSTRACT

Structural tailoring of the flavone framework (position 7) via organopalladium-catalyzed C-C bond formation was attempted in this study. The impact of substituents with varied electronic effects (phenyl ring, position 2 of the benzopyran scaffold) on the antitumor properties was also assessed. Resultantly, the efforts yielded a furyl arm bearing benzopyran possessing a 4-fluoro phenyl ring (position 2) (14) that manifested a magnificent antitumor profile against the Ishikawa cell lines mediated through dual inhibition of PARP and tubulin [(IC50 (PARP1) = 74 nM, IC50 (PARP2) = 109 nM) and tubulin (IC50 = 1.4 µM)]. Further investigations confirmed the ability of 14 to induce apoptosis as well as autophagy and cause cell cycle arrest at the G2/M phase. Overall, the outcome of the study culminated in a tractable dual PARP-tubulin inhibitor endowed with an impressive activity profile against endometrial cancer.


Subject(s)
Antineoplastic Agents , Endometrial Neoplasms , Flavones , Humans , Female , Tubulin Modulators/pharmacology , Tubulin Modulators/chemistry , Tubulin/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Cell Line, Tumor , Drug Screening Assays, Antitumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Apoptosis , Endometrial Neoplasms/drug therapy , Endometrial Neoplasms/pathology , Flavones/pharmacology , Benzopyrans , Cell Proliferation
12.
Curr Drug Targets ; 24(15): 1184-1208, 2023.
Article in English | MEDLINE | ID: mdl-37946353

ABSTRACT

Proteolysis Targeting Chimeras (PROTACs) technology has emerged as a promising strategy for the treatment of undruggable therapeutic targets. Researchers have invested a great effort in developing druggable PROTACs; however, the problems associated with PROTACs, including poor solubility, metabolic stability, cell permeability, and pharmacokinetic profile, restrict their clinical utility. Thus, there is a pressing need to expand the size of the armory of PROTACs which will escalate the chances of pinpointing new PROTACs with optimum pharmacokinetic and pharmacodynamics properties. N- heterocycle is a class of organic frameworks that have been widely explored to construct new and novel PROTACs. This review provides an overview of recent efforts of medicinal chemists to develop N-heterocycle-based PROTACs as effective cancer therapeutics. Specifically, the recent endeavors centred on the discovery of PROTACs have been delved into various classes based on the E3 ligase they target (MDM2, IAP, CRBN, and other E3 ligases). Mechanistic insights revealed during the biological assessment of recently furnished Nheterocyclic- based PROTACs constructed via the utilization of ligands for various E3 ligases have been discussed.


Subject(s)
Proteolysis Targeting Chimera , Ubiquitin-Protein Ligases , Humans , Permeability , Solubility , Ligands
13.
Bioorg Chem ; 141: 106893, 2023 12.
Article in English | MEDLINE | ID: mdl-37783100

ABSTRACT

Diverse drug design strategies viz. molecular hybridization, substituent installation, scaffold hopping, isosteric replacement, high-throughput screening, induction and separation of chirality, structure modifications of phytoconstituents and use of structural templates have been exhaustively leveraged in the last decade to load the chemical toolbox of PARP inhibitors. Resultantly, numerous promising scaffolds have been pinpointed that in turn have led to the resuscitation of the credence to PARP inhibitors as cancer therapeutics. This review briefly presents the physiological functions of PARPs, the pharmacokinetics, and pharmacodynamics, and the interaction profiles of FDA-approved PARP inhibitors. Comprehensively covered is the section on the drug design strategies employed by drug discovery enthusiasts for furnishing PARP inhibitors. The impact of structural variations in the template of designed scaffolds on enzymatic and cellular activity (structure-activity relationship studies) has been discussed. The insights gained through the biological evaluation such as profiling of physicochemical properties andin vitroADME properties, PK assessments, and high-dose pharmacology are covered.


Subject(s)
Neoplasms , Poly(ADP-ribose) Polymerase Inhibitors , Humans , Poly(ADP-ribose) Polymerase Inhibitors/chemistry , Structure-Activity Relationship , Neoplasms/drug therapy , Drug Discovery , Drug Design
14.
Expert Opin Drug Discov ; 18(10): 1169-1193, 2023.
Article in English | MEDLINE | ID: mdl-37525475

ABSTRACT

INTRODUCTION: PARP inhibitors block the DNA-repairing mechanism of PARP and represent a promising class of anti-cancer therapy. The last decade has witnessed FDA approvals of several PARP inhibitors, with some undergoing advanced-stage clinical investigation. Medicinal chemists have invested much effort to expand the structure pool of PARP inhibitors. Issues associated with the use of PARP inhibitors that make their standing disconcerting in the pharmaceutical sector have been addressed via the design of new structural assemblages. AREA COVERED: In this review, the authors present a detailed account of the medicinal chemistry campaigns conducted in the recent past for the construction of PARP1/PARP2 inhibitors, PARP1 biased inhibitors, and PARP targeting bifunctional inhibitors as well as PARP targeting degraders (PROTACs). Limitations associated with FDA-approved PARP inhibitors and strategies to outwit the limitations are also discussed. EXPERT OPINION: The PARP inhibitory field has been rejuvenated with numerous tractable entries in the last decade. With numerous magic bullets in hand coupled with unfolded tactics to outwit the notoriety of cancer cells developing resistance toward PARP inhibitors, the dominance of PARP inhibitors as a sagacious option of targeted therapy is highly likely to be witnessed soon.


Subject(s)
Neoplasms , Poly(ADP-ribose) Polymerase Inhibitors , Humans , DNA Repair , Neoplasms/drug therapy , Neoplasms/pathology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use
15.
Int J Mol Sci ; 24(16)2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37628767

ABSTRACT

Colorectal cancer (CRC) is one of the most commonly diagnosed malignancies and a leading cause of cancer worldwide. Histone deacetylases (HDACs), which regulate cell proliferation and survival, are associated with the development and progression of cancer. Moreover, HDAC inhibitors are promising therapeutic targets, with five HDAC inhibitors approved for cancer treatment to date. However, their safety profile necessitates the exploration of well-tolerated HDAC inhibitors that can be used in cancer therapeutic strategies. In this study, the pan-HDAC inhibitor MPT0G236 reduced the viability and inhibited the proliferation of human colorectal cancer cells, and normal human umbilical vein endothelial cells (HUVECs) showed reduced sensitivity. These findings indicated that MPT0G236 specifically targeted malignant tumor cells. Notably, MPT0G236 significantly inhibited the activities of HDAC1, HDAC2, and HDAC3, Class I HDACs, as well as HDAC6, a Class IIb HDAC, at low nanomolar concentrations. Additionally, it promoted the accumulation of acetyl-α-tubulin and acetyl-histone H3 in HCT-116 and HT-29 cells in a concentration-dependent manner. Furthermore, MPT0G236 treatment induced G2/M cell cycle arrest in CRC cells by initially regulating the levels of cell-cycle-related proteins, such as p-MPM2; specifically reducing p-cdc2 (Y15), cyclin B1, and cdc25C levels; and subsequently inducing apoptosis through the caspase-dependent pathways and PARP activation. Our findings demonstrate that MPT0G236 exhibits significant anticancer activity in human colorectal cancer cells.


Subject(s)
Colorectal Neoplasms , Histone Deacetylase Inhibitors , Humans , Histone Deacetylase Inhibitors/pharmacology , Apoptosis , Cell Proliferation , Cell Cycle Proteins , Histone Deacetylases , Human Umbilical Vein Endothelial Cells , Colorectal Neoplasms/drug therapy
16.
Biochim Biophys Acta Rev Cancer ; 1878(5): 188957, 2023 09.
Article in English | MEDLINE | ID: mdl-37488051

ABSTRACT

Eicosanoids are a family of bioactive lipids that play diverse roles in the normal physiology of the brain, including neuronal signaling, synaptic plasticity, and regulation of cerebral blood flow. In the brain, eicosanoids are primarily derived from arachidonic acid, which is released from membrane phospholipids in response to various stimuli. Prostaglandins (PGs) and leukotrienes (LTs) are the major classes of eicosanoids produced in the brain, and they act through specific receptors to modulate various physiological and pathological processes. Dysregulation of eicosanoids has been implicated in the development and progression of brain tumors, including glioblastoma (GBM), meningioma, and medulloblastoma. Eicosanoids have been shown to promote tumor cell proliferation, migration, invasion, angiogenesis, and resistance to therapy. Particularly, PGE2 promotes GBM cell survival and resistance to chemotherapy. Understanding the role of eicosanoids in brain tumors can inform the development of diagnostic and prognostic biomarkers, as well as therapeutic strategies that target eicosanoid pathways. Cyclooxygenase (COX)-2 and 5-lipoxygenase (LOX) inhibitors have been shown to reduce the growth and invasiveness of GBM cells. Moreover, eicosanoids have immunomodulatory effects that can impact the immune response to brain tumors. Understanding the role of eicosanoids in the immune response to brain tumors can inform the development of immunotherapy approaches for these tumors. Overall, the complex role of eicosanoids in the brain underscores the importance of further research to elucidate their functions in normal physiology and disease, and highlights the potential for developing novel therapeutic approaches that target eicosanoid pathways in brain tumors.


Subject(s)
Brain Neoplasms , Eicosanoids , Eicosanoids/metabolism , Brain , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/therapy , Humans , Animals , Signal Transduction , Dinoprostone/metabolism , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/therapy
17.
Eur J Med Chem ; 258: 115505, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37302341

ABSTRACT

Precise and accurate control of cell cycle progression is required to maintain cell identity and proliferation. Failing to keep it will lead to genome instability and tumorigenesis. Cell Division Cycle 25 (CDC25) phosphatases are the key to regulating the activity of the master cell cycle controller, cyclin-dependent kinases (CDKs). Dysregulation of CDC25 has been shown to associate with several human malignancies. Here, we reported a series of derivatives of the CDC25 inhibitor, NSC663284, bearing quinones as core scaffolds and morpholin alkylamino side chains. Among these derivatives, the cytotoxic activity of the 6-isomer of 5,8-quinolinedione derivatives (6b, 16b, 17b, and 18b) displayed higher potency against colorectal cancer (CRC) cells. Compound 6b possessed the most antiproliferative activity, with IC50 values of 0.59 µM (DLD1) and 0.44 µM (HCT116). The treatment of compound 6b resulted in a remarkable effect on cell cycle progression, blocking S-phase progression in DLD1 cells straight away while slowing S-phase progression and accumulated cells in the G2/M phase in HCT116 cells. Furthermore, we showed that compound 6b inhibited CDK1 dephosphorylation and H4K20 methylation in cells. The treatment with compound 6b induced DNA damage and triggered apoptosis. Our study identifies compound 6b as a potent CDC25 inhibitor that induces genome instability and kills cancer cells through an apoptotic pathway, deserving further investigation to fulfill its candidacy as an anti-CRC agent.


Subject(s)
Colorectal Neoplasms , cdc25 Phosphatases , Humans , Cell Division , Cell Cycle , Genomic Instability , Colorectal Neoplasms/drug therapy
18.
Expert Opin Ther Pat ; 33(5): 349-369, 2023.
Article in English | MEDLINE | ID: mdl-37249104

ABSTRACT

INTRODUCTION: Histone deacetylase (HDAC) inhibitors have been considered as an attractive strategy to reverse aberrant epigenetic changes associated with cancer treatments. The use of HDAC inhibitors in various cancer types has continued to develop for decades, bringing several novel HDAC inhibitors successfully into clinical trials. The combination use of HDAC inhibitors with other agents have also been developed and have demonstrated superior efficacy compared to that of monotherapy in recent studies. Hence, development of new anticancer treatment and therapeutic regimen is necessary. AREAS COVERED: This review summarizes a comprehensive review of the patent literature from 2020 to 2022 including HDAC inhibitors and their use as anticancer agents (searched from European Patent Office, 2020-2022). The approved and developing HDAC inhibitors are described. It also provides perspectives on the challenges and future opportunities. EXPERT OPINION: Although hundreds of clinical trials of HDAC inhibitors are still going on, the application for HDAC inhibitors has been limited at present . Not only in the anticancer treatment, but also non-oncology disease therapies are being investigated eagerly. Recently, applications of HDAC inhibitors in non-oncology diseases have also been revealed and proceeded to clinical trials. New indications for HDAC inhibitors are needed urgently in the future.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Patents as Topic , Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Histone Deacetylases/therapeutic use
19.
Eur J Med Chem ; 256: 115459, 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37172473

ABSTRACT

Monoamine oxidase A (MAO A) and heat shock protein 90 (HSP90) inhibitors have been shown to decrease the progression of glioblastoma (GBM) and other cancers. In this study, a series of MAO A/HSP90 dual inhibitors were designed and synthesized in the hope to develop more effective treatment of GBM. Compounds 4-b and 4-c are conjugates of isopropylresorcinol (pharmacophore of HSP90 inhibitor) with the phenyl group of clorgyline (MAO A inhibitor) by a tertiary amide bond substituted with methyl (4-b) or ethyl (4-c) group, respectively. They inhibited MAO A activity, HSP90 binding, and the growth of both TMZ-sensitive and -resistant GBM cells. Western blots showed that they increased HSP70 expression indicating reduced function of HSP90, reduced HER2 and phospho-Akt expression similar to MAO A or HSP90 inhibitor itself. Both compounds decreased IFN-γ induced PD-L1 expression in GL26 cells, suggesting they can act as immune checkpoint inhibitor. Further, they reduced tumor growth in GL26 mouse model. NCI-60 analysis showed they also inhibited the growth of colon cancer, leukemia, non-small cell lung and other cancers. Taken together, this study demonstrates MAO A/HSP90 dual inhibitors 4-b and 4-c reduced the growth of GBM and other cancers, and they have potential to inhibit tumor immune escape.


Subject(s)
Antineoplastic Agents , Glioblastoma , Mice , Animals , Monoamine Oxidase/metabolism , Glioblastoma/drug therapy , Monoamine Oxidase Inhibitors/pharmacology , Clorgyline/pharmacology , Antineoplastic Agents/pharmacology , HSP70 Heat-Shock Proteins , HSP90 Heat-Shock Proteins
SELECTION OF CITATIONS
SEARCH DETAIL