Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Curr Res Transl Med ; 67(1): 20-27, 2019 02.
Article in English | MEDLINE | ID: mdl-30104160

ABSTRACT

PURPOSE OF THE STUDY: Mesenchymal stromal cells (MSCs) are considered a promising tool for cell therapy approaches. The translation of research-based cell culture protocols into procedures that comply with Good Manufacturing Practice (GMP) is critical. The aim of this study was to design a new method for the expansion of MSCs from Adipose Tissue (AT-MSCs) in compliance with GMP, without enzymatic tissue digestion and without the use of animal proteins as source of growth factors. PATIENTS AND METHODS: MSCs were expanded from 10 periumbilical biopsies. Our new isolation approach is based on: (1) disruption of AT with an automated, closed system; (2) use of GMP-grade medium without the addition of fetal bovine serum or platelet lysate; (3) use of human recombinant Trypsin. AT-MSCs cultured in α-MEM and minced by scalpel were used as control. RESULTS: It was possible to expand MSCs from all the AT-samples for at least eight passages. MSCs displayed the typical spindle-shape morphology, a high viability, multilineage differentiation potential and high expression levels of the typical MSC-specific surface antigens and genes. Compared to standard method, MSCs obtained with the new method showed higher yield, up to passage 6, and higher purity in terms of percentage of CD34 and CD45 markers. All AT-MSCs exhibit in vitro immunosuppressive capacity and possess a normal karyotype. CONCLUSIONS: Our data clearly demonstrate that our new approach permits to generate AT-MSCs fully compliant for therapeutic use and better at least in terms of quantity and purity than those obtained with the standard method.


Subject(s)
Adipose Tissue/cytology , Cell Separation/methods , Cell- and Tissue-Based Therapy/methods , Mesenchymal Stem Cells/cytology , Adult , Aged , Cell Differentiation , Cell Proliferation , Cells, Cultured , Female , Humans , Male , Middle Aged
4.
Leukemia ; 26(2): 225-35, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21844875

ABSTRACT

Childhood acute myeloid leukemia (AML) is a hematological malignancy in which tumor burden is continuously replenished by leukemic-initiating cells (ICs), which proliferate slowly and are refractory to chemotherapeutic agents. We investigated whether interleukin (IL)-12, an immuno-modulatory cytokine with anti-tumor activity, may target AML blasts (CD45(+)CD33(+)) and populations known to contain leukemia ICs (that is, CD34(+)CD38(-), CD33(+)CD38(+) and CD44(+)CD38(-) cells). We demonstrate for the first time that: i) AML blasts and their CD34(+)CD38(-), CD33(+)CD38(+), CD44(+)CD38(-) subsets express the heterodimeric IL-12 receptor (IL-12R), ii) AML cells injected subcutaneously into NOD/SCID/Il2rg(-/-) (NSG) mice developed a localized tumor mass containing leukemic ICs and blasts that were virtually eliminated by IL-12 treatment, iii) AML cells injected intravenously into NSG mice engrafted within the first month in the spleen, but not in bone marrow or peripheral blood. At this time, IL-12 dramatically dampened AML CD45(+)CD33(+), CD34(+)CD38(-), CD33(+)CD38(+) and CD44(+)CD38(-) populations, only sparing residual CD33(+)CD38(+) cells that did not express IL-12Rß2. From 30 to 60 days after the initial inoculum, these IL-12-unresponsive cells expanded and metastasized in both control and IL-12-treated NSG mice. Our data indicate that the absence of IL-12Rß2 in pediatric AML cells favours leukemia progression in NOD/SCID/IL2Rγc-deficient mice.


Subject(s)
ADP-ribosyl Cyclase 1/immunology , Antigens, CD/immunology , Antigens, Differentiation, Myelomonocytic/immunology , Interleukin-12 Receptor beta 2 Subunit/metabolism , Leukemia, Myeloid, Acute/pathology , Adolescent , Adult , Animals , Cell Division , Child , Child, Preschool , Disease Progression , Female , Flow Cytometry , Humans , Infant , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/metabolism , Male , Mice , Mice, Inbred NOD , Mice, SCID , Real-Time Polymerase Chain Reaction , Sialic Acid Binding Ig-like Lectin 3
SELECTION OF CITATIONS
SEARCH DETAIL