Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 169
Filter
1.
Materials (Basel) ; 17(15)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39124321

ABSTRACT

Ultrafast laser technology has moved from ultrafast to ultra-strong due to the development of chirped pulse amplification technology. Ultrafast laser technology, such as femtosecond lasers and picosecond lasers, has quickly become a flexible tool for processing brittle and hard materials and complex micro-components, which are widely used in and developed for medical, aerospace, semiconductor applications and so on. However, the mechanisms of the interaction between an ultrafast laser and brittle and hard materials are still unclear. Meanwhile, the ultrafast laser processing of these materials is still a challenge. Additionally, highly efficient and high-precision manufacturing using ultrafast lasers needs to be developed. This review is focused on the common challenges and current status of the ultrafast laser processing of brittle and hard materials, such as nickel-based superalloys, thermal barrier ceramics, diamond, silicon dioxide, and silicon carbide composites. Firstly, different materials are distinguished according to their bandgap width, thermal conductivity and other characteristics in order to reveal the absorption mechanism of the laser energy during the ultrafast laser processing of brittle and hard materials. Secondly, the mechanism of laser energy transfer and transformation is investigated by analyzing the interaction between the photons and the electrons and ions in laser-induced plasma, as well as the interaction with the continuum of the materials. Thirdly, the relationship between key parameters and ultrafast laser processing quality is discussed. Finally, the methods for achieving highly efficient and high-precision manufacturing of complex three-dimensional micro-components are explored in detail.

2.
J Pharm Sci ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38986870

ABSTRACT

Topical ocular sustained-release drug delivery systems represent an effective strategy for the treatment of ocular diseases, for which a suitable carrier has yet to be sufficiently developed. Herein, an eye-compatible sodium polystyrene sulfonate resin (SPSR) was synthesized with a uniform particle size of about 3 µm. Ligustrazine phosphate (LP) was adsorbed to SPSR by cation exchange to form LP@SPSR. LP@SPSR suspension eye drops were further developed using the combination of Carbopol 934P and xanthan gum as suspending agents. The LP@SPSR suspension showed a sustained release in vitro, which was consistent with the observed porcine corneal penetration ex vivo. Pharmacokinetics in tear fluid of rabits indicated that LP@SPSR suspension led to prolonged ocular retention of LP and a 2-fold improved the area under the drug concentration-time curve (AUC0-t). Pharmacokinetics in the aqueous humor of rabbits showed 2.8-fold enhancement in the AUC0-t compared to LP solution. The LP@SPSR suspension exhibited no cytotoxicity to human corneal epithelial cells, nor irritation was observed in rabbit eyes. Thus, the LP@SPSR suspension has been validated as a safe and sustained release system leading to enhanced ophthalmic bioavailability for treating ocular diseases.

3.
Front Genet ; 15: 1412767, 2024.
Article in English | MEDLINE | ID: mdl-38948355

ABSTRACT

Introduction: The Euchromatic Histone Methyl Transferase Protein 2 (EHMT2), also known as G9a, deposits transcriptionally repressive chromatin marks that play pivotal roles in the maturation and homeostasis of multiple organs. Recently, we have shown that Ehmt2 inactivation in the mouse pancreas alters growth and immune gene expression networks, antagonizing Kras-mediated pancreatic cancer initiation and promotion. Here, we elucidate the essential role of Ehmt2 in maintaining a transcriptional landscape that protects organs from inflammation. Methods: Comparative RNA-seq studies between normal postnatal and young adult pancreatic tissue from Ehmt2 conditional knockout animals (Ehmt2 fl/fl ) targeted to the exocrine pancreatic epithelial cells (Pdx1-Cre and P48 Cre/+ ), reveal alterations in gene expression networks in the whole organ related to injury-inflammation-repair, suggesting an increased predisposition to damage. Thus, we induced an inflammation repair response in the Ehmt2 fl/fl pancreas and used a data science-based approach to integrate RNA-seq-derived pathways and networks, deconvolution digital cytology, and spatial transcriptomics. We also analyzed the tissue response to damage at the morphological, biochemical, and molecular pathology levels. Results and discussion: The Ehmt2 fl/fl pancreas displays an enhanced injury-inflammation-repair response, offering insights into fundamental molecular and cellular mechanisms involved in this process. More importantly, these data show that conditional Ehmt2 inactivation in exocrine cells reprograms the local environment to recruit mesenchymal and immunological cells needed to mount an increased inflammatory response. Mechanistically, this response is an enhanced injury-inflammation-repair reaction with a small contribution of specific Ehmt2-regulated transcripts. Thus, this new knowledge extends the mechanisms underlying the role of the Ehmt2-mediated pathway in suppressing pancreatic cancer initiation and modulating inflammatory pancreatic diseases.

4.
J Cancer Res Clin Oncol ; 150(6): 305, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38871970

ABSTRACT

PURPOSE: The copper metabolism MURR1 domain 10 (COMMD10) plays a role in a variety of tumors. Here, we investigated its role in gastric cancer (GC). METHODS: Online prediction tools, quantitative real-time PCR, western blotting and immunohistochemistry were used to evaluate the expression of COMMD10 in GC. The effect of COMMD10 knockdown was investigated in the GC cell lines and in in vivo xenograft tumor experiments. Western blotting and immunofluorescence were used to explore the relationships between COMMD10 and DNA damage. RESULTS: The expression of COMMD10 was upregulated in GC compared to that in para-cancerous tissue and correlated with a higher clinical TNM stage (P = 0.044) and tumor size (P = 0.0366). High COMMD10 expression predicted poor prognosis in GC. Knockdown of COMMD10 resulted in the suppression of cell proliferation, migration, and invasion, accompanied by cell cycle arrest and an elevation in apoptosis rate. Moreover, the protein expression of COMMD10 was decreased in cisplatin-induced DNA-damaged GC cells. Suppression of COMMD10 impeded DNA damage repair, intensified DNA damage, and activated ATM-p53 signaling pathway in GC. Conversely, restoration of COMMD10 levels suppressed DNA damage and activation of the ATM-p53 signaling cascade. Additionally, knockdown of COMMD10 significantly restrained the growth of GC xenograft tumors while inhibiting DNA repair, augmenting DNA damage, and activating the ATM-p53 signaling pathway in xenograft tumor tissue. CONCLUSION: COMMD10 is involved in DNA damage repair and maintains genomic stability in GC; knockdown of COMMD10 impedes the development of GC by exacerbating DNA damage, suggesting that COMMD10 may be new target for GC therapy.


Subject(s)
Cell Proliferation , DNA Damage , Disease Progression , Stomach Neoplasms , Stomach Neoplasms/pathology , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Humans , Animals , Mice , Female , Male , Mice, Nude , Cell Line, Tumor , Apoptosis , Prognosis , Middle Aged , Xenograft Model Antitumor Assays , Mice, Inbred BALB C , Cell Movement , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Gene Expression Regulation, Neoplastic
5.
Int J Pharm ; 660: 124294, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38823467

ABSTRACT

Atropine sulfate (ATS) eye drops at low concentrations constitute a limited selection for myopia treatment, with challenges such as low ophthalmic bioavailability and inadequate stability. This study proposes a novel strategy by synthesizing ophthalmic sodium polystyrene sulfonate resin (SPSR) characterized by a spherical shape and uniform size for cationic exchange with ATS. The formulation of ATS@SPSR suspension eye drops incorporates xanthan gum and hydroxypropyl methylcellulose (HPMC) as suspending agents. In vitro studies demonstrated that ATS@SPSR suspension eye drops exhibited sustained release characteristics, and tropic acid, its degradation product, remained undetected for 30 days at 40 °C. The ATS levels in the tear fluids and aqueous humor of New Zealand rabbits indicated a significant increase in mean residence time (MRT) and area under the drug concentration-time curve (AUC0-12h) for ATS@SPSR suspension eye drops compared to conventional ATS eye drops. Moreover, safety assessment confirmed the non-irritating nature of ATS@SPSR suspension eye drops in rabbit eyes. In conclusion, the cation-responsive sustained-release ATS@SPSR suspension eye drops enhanced the bioavailability and stability of ATS, offering a promising avenue for myopia treatment.


Subject(s)
Atropine , Biological Availability , Delayed-Action Preparations , Drug Stability , Ophthalmic Solutions , Polystyrenes , Animals , Rabbits , Delayed-Action Preparations/pharmacokinetics , Polystyrenes/chemistry , Polystyrenes/pharmacokinetics , Ophthalmic Solutions/pharmacokinetics , Ophthalmic Solutions/administration & dosage , Atropine/pharmacokinetics , Atropine/administration & dosage , Atropine/chemistry , Male , Hypromellose Derivatives/chemistry , Tears/metabolism , Drug Liberation , Aqueous Humor/metabolism , Polysaccharides, Bacterial/chemistry , Administration, Ophthalmic
6.
J Hazard Mater ; 476: 135045, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38944990

ABSTRACT

Isoprocarb (IPC), a representative monocyclic carbamate insecticide, poses risks of environmental contamination and harm to non-target organisms. However, its degradation mechanism has not been reported. In this study, a newly IPC-degrading strain D-6 was isolated from the genus Rhodococcus, and its degradation characteristics and pathway of IPC were analyzed. A novel hydrolase IpcH, responsible for hydrolyzing IPC to 2-isopropylphenol (IPP), was identified. IpcH exhibited low similarity (< 27 %) with other reported hydrolases, including previously characterized carbamate insecticides hydrolases, indicating its novelty. The Km and kcat values of IpcH towards IPC were 69.99 ± 8.33 µM and 95.96 ± 4.02 s-1, respectively. Also, IpcH exhibited catalytic activity towards various types of carbamate insecticides, including monocyclic carbamates (IPC, fenobucarb and propoxur), bicyclic carbamates (carbaryl and carbofuran), and linear carbamates (oxamyl and aldicarb). The molecular docking and site-directed mutagenesis revealed that His254, His256, His329 and His376 were essential for IpcH activity. Strain D-6 can effectively reduce the toxicity of IPC and IPP towards sensitive organisms through its degradation ability. This study presents the initial report on IPC degradation pathway and molecular mechanism of IPC degradation, and provides a good potential strain for bioremediating IPC and IPP-contaminated environments.


Subject(s)
Biodegradation, Environmental , Hydrolases , Insecticides , Rhodococcus , Rhodococcus/metabolism , Rhodococcus/genetics , Hydrolases/metabolism , Hydrolases/genetics , Insecticides/metabolism , Insecticides/chemistry , Insecticides/toxicity , Molecular Docking Simulation , Urethane/metabolism , Urethane/chemistry
7.
Poult Sci ; 103(7): 103794, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38718539

ABSTRACT

Avian feather color is a fascinating trait, and the genetic mechanism of duck plumage formation is still in the preliminary stage. In this study, feather color of Liancheng White ducks was analyzed by determination of melanin content and RNA-seq analysis. In this research, 9 ducks from Mallards (n = 3), Liancheng White (n = 3) and Pekin ducks (n = 3) were used by high performance liquid chromatography (HPLC) and Masson-Fontana staining to reveal the difference of feather melanin content. RNA-seq from 11 hair follicle tissues (1- and 8-wk-old) of Liancheng White ducks (n = 5) and Pekin ducks (n = 7) was used to analyze the candidate genes for the feather melanin synthesis, and Immunofluorescence experiment was used to show the protein expression in 6 black- and white-feathered ducks. Pectorale, skin, liver, fat, brain, heart, kidney, lung, spleen of an 8-wk-old black-feathered Mallard were collected for candidate gene expression. The results showed that the contents of feathers, beak, web melanin in Liancheng White ducks were higher than in Pekin ducks (p < 0.05). Melanin within hair follicles was located in the barb ridge and hair matrix of black feather duck, also we found that TYRP1, TYR, SOX10 genes were differentially expressed between Liancheng White and Pekin ducks (p < 0.05), and these genes were mainly expressed showed in duck skin tissues. This study revealed the unique feather color phenotype of Liancheng White duck shedding light on the transcriptome that underlies it.


Subject(s)
Ducks , Feathers , Gene Expression Profiling , Hair Follicle , Pigmentation , Animals , Feathers/chemistry , Ducks/genetics , Pigmentation/genetics , Hair Follicle/metabolism , Gene Expression Profiling/veterinary , Transcriptome , Melanins/metabolism
8.
Pak J Pharm Sci ; 37(2): 385-397, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38767106

ABSTRACT

A drug-resin liquid delayed-release suspension of pantoprazole sodium (PAZ-Na) was prepared to improve the effectiveness, convenience and safety of peptic ulcer treatment in children, the elderly and patients with dysphagia. Pantoprazole sodium drug-resin complexes (PAZ-Na-DRC) were prepared using the bath method. The fluidized bed coating method is used to coat it and then add excipients to make a dry suspension prepared before use. The parameters of the in vitro release experimental conditions were optimized and the drug release curve showed delayed release. Rats were given commercial PAZ-Na enteric-coated pellet capsules and the PAZ-Na delayed release suspension via intragastric administration. The results showed that the Tmax of the PAZ-Na delayed release suspension was increased from 2h to 4h compared with the PAZ-Na enteric-coated pellet capsules. Similarly, the Cmax was reduced from 6.162µg/mL to 3.244µg/mL with the concentration-time curve is very gentle compared with the commercial drug capsules. After oral administration, the relative bioavailability of PAZ-Na delayed release suspension (AUC0-24 of 19.578 µg•h•mL-1) compared with the commercial drug (AUC0-24 of 17.388 µg•h•mL-1) was 112.67%. The findings showed that the PAZ-Na delayed release suspension for oral administration was successfully formulated with highly improved pharmacokinetic indices.


Subject(s)
Delayed-Action Preparations , Pantoprazole , Suspensions , Pantoprazole/pharmacokinetics , Pantoprazole/administration & dosage , Animals , Male , Rats , Drug Liberation , Biological Availability , Administration, Oral , Drug Compounding , Excipients/chemistry , Rats, Sprague-Dawley
9.
Pak J Pharm Sci ; 37(2): 405-416, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38767108

ABSTRACT

To develop a new kind of famotidine-resin microcapsule for gastric adhesion sustained release by screening out suitable excipients and designing reasonable prescriptions to improve patient drug activities to achieve the expected therapeutic effect. The famotidine drug resin was prepared using the water bath method with carbomer 934 used as coating material. Microcapsules were prepared using the emulsified solvent coating method and appropriate excipients were used to prepare famotidine sustained release suspension. Pharmacokinetics of the developed microcapsules were studied in the gastrointestinal tract of rats. The self-made sustained-release suspension of famotidine hydrochloride effectively reduced the blood concentration and prolonged the action time. The relative bioavailability of the self-made suspension of the famotidine hydrochloride to the commercially available famotidine hydrochloride was 146.44%, with an average retention time of about 5h longer, which indicated that the new suspension had acceptable adhesion properties. The findings showed that the newly developed famotidine-resin microcapsule increased the bioavailability of the drug with a significant sustained-release property.


Subject(s)
Biological Availability , Delayed-Action Preparations , Famotidine , Famotidine/pharmacokinetics , Famotidine/administration & dosage , Famotidine/chemistry , Famotidine/pharmacology , Animals , Rats , Male , Excipients/chemistry , Suspensions , Capsules , Drug Liberation , Acrylic Resins/chemistry , Histamine H2 Antagonists/pharmacokinetics , Histamine H2 Antagonists/administration & dosage , Histamine H2 Antagonists/pharmacology , Histamine H2 Antagonists/chemistry , Adhesiveness , Drug Compounding , Acrylates
10.
Appl Environ Microbiol ; 90(5): e0197423, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38619269

ABSTRACT

17ß-estradiol (E2) is a natural endocrine disruptor that is frequently detected in surface and groundwater sources, thereby threatening ecosystems and human health. The newly isolated E2-degrading strain Sphingomonas colocasiae C3-2 can degrade E2 through both the 4,5-seco pathway and the 9,10-seco pathway; the former is the primary pathway supporting the growth of this strain and the latter is a branching pathway. The novel gene cluster ean was found to be responsible for E2 degradation through the 4,5-seco pathway, where E2 is converted to estrone (E1) by EanA, which belongs to the short-chain dehydrogenases/reductases (SDR) superfamily. A three-component oxygenase system (including the P450 monooxygenase EanB1, the small iron-sulfur protein ferredoxin EanB2, and the ferredoxin reductase EanB3) was responsible for hydroxylating E1 to 4-hydroxyestrone (4-OH-E1). The enzymatic assay showed that the proportion of the three components is critical for its function. The dioxygenase EanC catalyzes ring A cleavage of 4-OH-E1, and the oxidoreductase EanD is responsible for the decarboxylation of the ring A-cleavage product of 4-OH-E1. EanR, a TetR family transcriptional regulator, acts as a transcriptional repressor of the ean cluster. The ean cluster was also found in other reported E2-degrading sphingomonads. In addition, the novel two-component monooxygenase EanE1E2 can open ring B of 4-OH-E1 via the 9,10-seco pathway, but its encoding genes are not located within the ean cluster. These results refine research on genes involved in E2 degradation and enrich the understanding of the cleavages of ring A and ring B of E2.IMPORTANCESteroid estrogens have been detected in diverse environments, ranging from oceans and rivers to soils and groundwater, posing serious risks to both human health and ecological safety. The United States National Toxicology Program and the World Health Organization have both classified estrogens as Group 1 carcinogens. Several model organisms (proteobacteria) have established the 4,5-seco pathway for estrogen degradation. In this study, the newly isolated Sphingomonas colocasiae C3-2 could degrade E2 through both the 4,5-seco pathway and the 9,10-seco pathway. The novel gene cluster ean (including eanA, eanB1, eanC, and eanD) responsible for E2 degradation by the 4,5-seco pathway was identified; the novel two-component monooxygenase EanE1E2 can open ring B of 4-OH-E1 through the 9,10-seco pathway. The TetR family transcriptional regulator EanR acts as a transcriptional repressor of the ean cluster. The cluster ean was also found to be present in other reported E2-degrading sphingomonads, indicating the ubiquity of the E2 metabolism in the environment.


Subject(s)
Biodegradation, Environmental , Estradiol , Multigene Family , Sphingomonas , Sphingomonas/metabolism , Sphingomonas/genetics , Estradiol/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Endocrine Disruptors/metabolism , Phylogeny
11.
bioRxiv ; 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38529489

ABSTRACT

The Euchromatic Histone Methyl Transferase Protein 2 (EHMT2), also known as G9a, deposits transcriptionally repressive chromatin marks that play pivotal roles in the maturation and homeostasis of multiple organs. Recently, we have shown that EHMT2 inactivation alters growth and immune gene expression networks, antagonizing KRAS-mediated pancreatic cancer initiation and promotion. Here, we elucidate the essential role of EHMT2 in maintaining a transcriptional landscape that protects organs from inflammation. Comparative RNA-seq studies between normal postnatal and young adult pancreatic tissue from EHMT2 conditional knockout animals ( EHMT2 fl/fl ) targeted to the exocrine pancreatic epithelial cells ( Pdx1-Cre and P48 Cre/+ ), reveal alterations in gene expression networks in the whole organ related to injury-inflammation-repair, suggesting an increased predisposition to damage. Thus, we induced an inflammation repair response in the EHMT2 fl/fl pancreas and used a data science-based approach to integrate RNA-seq-derived pathways and networks, deconvolution digital cytology, and spatial transcriptomics. We also analyzed the tissue response to damage at the morphological, biochemical, and molecular pathology levels. The EHMT2 fl/fl pancreas displays an enhanced injury-inflammation-repair response, offering insights into fundamental molecular and cellular mechanisms involved in this process. More importantly, these data show that conditional EHMT2 inactivation in exocrine cells reprograms the local environment to recruit mesenchymal and immunological cells needed to mount an increased inflammatory response. Mechanistically, this response is an enhanced injury-inflammation-repair reaction with a small contribution of specific EHMT2-regulated transcripts. Thus, this new knowledge extends the mechanisms underlying the role of the EHMT2-mediated pathway in suppressing pancreatic cancer initiation and modulating inflammatory pancreatic diseases.

12.
BMC Plant Biol ; 24(1): 207, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38515036

ABSTRACT

BACKGROUND: Bacterial wilt caused by Ralstonia solanacearum severely affects peanut (Arachis hypogaea L.) yields. The breeding of resistant cultivars is an efficient means of controlling plant diseases. Therefore, identification of resistance genes effective against bacterial wilt is a matter of urgency. The lack of a reference genome for a resistant genotype severely hinders the process of identification of resistance genes in peanut. In addition, limited information is available on disease resistance-related pathways in peanut. RESULTS: Full-length transcriptome data were used to generate wilt-resistant and -susceptible transcript pools. In total, 253,869 transcripts were retained to form a reference transcriptome for RNA-sequencing data analysis. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of differentially expressed genes revealed the plant-pathogen interaction pathway to be the main resistance-related pathway for peanut to prevent bacterial invasion and calcium plays an important role in this pathway. Glutathione metabolism was enriched in wilt-susceptible genotypes, which would promote glutathione synthesis in the early stages of pathogen invasion. Based on our previous quantitative trait locus (QTL) mapping results, the genes arahy.V6I7WA and arahy.MXY2PU, which encode nucleotide-binding site-leucine-rich repeat receptor proteins, were indicated to be associated with resistance to bacterial wilt. CONCLUSIONS: This study identified several pathways associated with resistance to bacterial wilt and identified candidate genes for bacterial wilt resistance in a major QTL region. These findings lay a foundation for investigation of the mechanism of resistance to bacterial wilt in peanut.


Subject(s)
Arachis , Ralstonia solanacearum , Arachis/genetics , Arachis/microbiology , Transcriptome , Ralstonia solanacearum/physiology , Plant Breeding , Disease Resistance/genetics , Glutathione/genetics , Plant Diseases/genetics , Plant Diseases/microbiology
13.
Drug Dev Ind Pharm ; 50(4): 363-375, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38482839

ABSTRACT

OBJECTIVE: The purpose of the present study was to formulate a menantine hydrochloride (MH) sustained-release suspension. METHODS: Menantine hydrochloride drug resin complex (MH-DRC) was prepared with strong acid cation exchange resin as carrier using water bath method. The MH-DRC was characterized using scanning electron microscopy, X-ray diffraction and infrared spectroscopy. The MH-coated microcapsule (MH-CM) with optimized formulation was further dispersed in a suitable medium to obtain a sustained-release suspension. The rats were given both the MH sustained-release suspension and the commercial MH sustained-release capsule by intragastric administration. The plasma concentration-time curves and related pharmacokinetic parameters were also investigated using a non-atrioventricular model. RESULTS: MH and ion-exchange resin were ionically bonded. AmberliteIRP®69 had a higher affinity for MH at the initial concentration of 5 mg·mL-1 and a reaction temperature of 25.0 ± 0.5 °C. In vitro drug release profile showed that both the drug resin complex and the coated microcapsules had a certain level of sustained-release effect. The t1/2 of MH sustained-release suspension was extended from 68.44 h to 72.79 h with the peak blood concentration being decreased to 3.56 µg·mL-1 and the Tmax extended to 12 h compared with the commercial MH sustained-release capsule. The concentration-time curve of the self-made MH sustained-release suspension was flattened and the average relative bioavailability (Fr) was 116.65% compared with the commercial MH sustained-release capsules. CONCLUSIONS: The findings showed that the MH sustained-release suspension was successfully formulated with acceptable pharmacokinetic indices for effective treatment of Alzheimer's disease.


Subject(s)
Ion Exchange Resins , Rats , Animals , Delayed-Action Preparations , Capsules , Administration, Oral , Drug Liberation , Biological Availability
14.
Genes (Basel) ; 15(2)2024 01 26.
Article in English | MEDLINE | ID: mdl-38397150

ABSTRACT

The capability of embryogenic callus induction is a prerequisite for in vitro plant regeneration. However, embryogenic callus induction is strongly genotype-dependent, thus hindering the development of in vitro plant genetic engineering technology. In this study, to examine the genetic variation in embryogenic callus induction rate (CIR) in peanut (Arachis hypogaea L.) at the seventh, eighth, and ninth subcultures (T7, T8, and T9, respectively), we performed genome-wide association studies (GWAS) for CIR in a population of 353 peanut accessions. The coefficient of variation of CIR among the genotypes was high in the T7, T8, and T9 subcultures (33.06%, 34.18%, and 35.54%, respectively), and the average CIR ranged from 1.58 to 1.66. A total of 53 significant single-nucleotide polymorphisms (SNPs) were detected (based on the threshold value -log10(p) = 4.5). Among these SNPs, SNPB03-83801701 showed high phenotypic variance and neared a gene that encodes a peroxisomal ABC transporter 1. SNPA05-94095749, representing a nonsynonymous mutation, was located in the Arahy.MIX90M locus (encoding an auxin response factor 19 protein) at T8, which was associated with callus formation. These results provide guidance for future elucidation of the regulatory mechanism of embryogenic callus induction in peanut.


Subject(s)
Arachis , Genome-Wide Association Study , Arachis/genetics , Polymorphism, Single Nucleotide , Genotype , Genetic Engineering
15.
ACS Nano ; 18(14): 9980-9996, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38387068

ABSTRACT

Human hands are amazingly skilled at recognizing and handling objects of different sizes and shapes. To date, soft robots rarely demonstrate autonomy equivalent to that of humans for fine perception and dexterous operation. Here, an intelligent soft robotic system with autonomous operation and multimodal perception ability is developed by integrating capacitive sensors with triboelectric sensor. With distributed multiple sensors, our robot system can not only sense and memorize multimodal information but also enable an adaptive grasping method for robotic positioning and grasp control, during which the multimodal sensory information can be captured sensitively and fused at feature level for crossmodally recognizing objects, leading to a highly enhanced recognition capability. The proposed system, combining the performance and physical intelligence of biological systems (i.e., self-adaptive behavior and multimodal perception), will greatly advance the integration of soft actuators and robotics in many fields.

16.
Gene ; 908: 148287, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38360127

ABSTRACT

Aralia elata (Miq.) Seem, a significant tree species in the Araliaceae family, has medicinal and edible properties. Saponins are the primary active components of A. elata. The 3-hydroxy-3-methylglutaryl- CoA reductase (HMGR) is the initial rate-limiting enzyme of the major metabolic pathway of saponins in A. elata. In this study, the AeHMGR gene was identified through screening of transcriptome data. Through the qRT-PCR analysis, it was determined that the expression level of AeHMGR gene is highest in the somatic embryo and stem of A. elata. Heterologous transformation in tobacco revealed that ectopic expression of the AeHMGR gene leads to a significant reduction in the expression levels of the NtSS, NtFPS, and NtSE genes in transgenic tobacco lines, with a minimum expression level of 0.24 times that of the wild type. In the overexpressed callus lines of A. elata, the expression levels of the AeFPS, AeSE, AeSS, and Aeß-AS genes were also significantly lower compared to the wild type, with a minimum expression level of approximately 0.3 times that of the wild type. Interestingly, the overexpression of the AeHMGR gene in A. elata somatic embryos led to a substantial decrease in the expression levels of AeFPS and AeSS, while the expression levels of AeSE and Aeß-AS increased. Among the transgenic somatic embryo strain lines, line 7 exhibited the highest expression levels of AeSE and Aeß-AS, with fold increases of 11.51 and 9.38, respectively, compared with that of the wild-type. Additionally, a high-performance liquid chromatography method was established to detect five individual saponins in transgenic A. elata. The total saponin content in line 7 somatic embryos was 1.14 times higher than that of wild-type materials, but only 0.30 times that of wild-type cultivated leaves. Moreover, the content of oleanolic acid saponin in line 7 was 1.35 times higher than that of wild-type cultivated leaves. These indicate that HMGR can affect triterpene biosynthesis.


Subject(s)
Aralia , Saponins , Animals , Aralia/genetics , Aralia/chemistry , Plant Leaves/chemistry , Animals, Genetically Modified , Saponins/genetics , Chromatography, High Pressure Liquid/methods
17.
J Am Chem Soc ; 146(8): 5274-5282, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38363827

ABSTRACT

The practical application of the H2/O2 proton-exchange membrane fuel cell (PEMFC) is being greatly limited by the use of high-cost Pt as electrode catalysts. Furthermore, the H2/O2 PEMFC is nonrechargeable and thus precludes kinetics energy recovery when equipped on electric vehicles and peak power regulation when combined to power grids. Here, we demonstrate a rechargeable H2/O2 PEMFC through embedding a redox flow battery into a conventional H2/O2 PEMFC. This flow battery employs H2/O2 reactive redox pairs such as NO3-/NO-Br2/Br- and H4SiW12O40/H5SiW12O40 whose redox potentials are as close as possible to those of O2/H2O and H2/H2O, respectively, so that the chemical potential losses during their reactions with O2 at the cathode and H2 at the anode were minimized. More importantly, the electrochemical reversibility allows the H2/O2 reacted redox pairs to be easily regenerated through fuel cell discharging on catalyst-free carbon electrodes at a low overpotential and brings in the fuel cell both chemical and electrical rechargeability, thereby realizing integrated functions of electricity generation- storage as well as efficient operation (achieving an open-circuit potential of 0.96 V and a peak power density of 0.57 W/cm2, which are comparable to a conventional H2/air PEMFC) with catalyst-free carbon electrodes.

18.
Anal Methods ; 16(11): 1674-1685, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38419501

ABSTRACT

Heavy metal ions (Cr6+, Co2+, Ni2+, and Cu2+) in the electroplating and electrolysis industries are significantly related to process parameters and product quality, even at lower concentrations. Absorption spectroscopy is widely used for substance qualitative and quantitative analysis, which is an analytical method with the potential for real-time monitoring of heavy metal ions concentration in industrial processes. In this paper, a low-concentration heavy metal ion analysis method based on multiple reflection enhanced absorption (MREA) is proposed. Compared with traditional absorption, MREA has the advantages of low concentration detection limit and high-sensitivity. First, a reflective film (Al-SiO2) was prepared and a multiple reflection optical structure was designed to realize multiple parallel reflections of light in the solution medium. Then absorption spectra of low-concentration Cr6+, Co2+, Ni2+ and Cu2+ solutions were measured by MREA and traditional absorption methods. Finally, spectral bandwidth and incident light spots were optimized to obtain a superior absorption enhancement effect. The results showed that MREA could effectively increase the substance absorbance compared with traditional absorption. At the same time, with the optimal spectral bandwidth (0.4 nm) and incident light spot (1 mm), the detection limit of Cr6+, Co2+, Ni2+ and Cu2+ was reduced by 81.48%, 82.52%, 80.92% and 82.93%, respectively. The sensitivity was improved by 5-6 times, which was more obvious for low-concentration detection. In addition, the MREA method can achieve ion concentration analysis when Cr6+, Co2+, Ni2+, and Cu2+ coexist, and the linear correlative coefficients of the C-A curves were all greater than 0.999. Moreover, by adjusting reflectivity of the reflective film and the number of reflections in the optical structure, the results of the MREA method can be further optimized for the low-concentration heavy metal ion analysis. The MREA method has the advantages of simplicity, rapidity and versatility, which can provide the technical foundation for real-time monitoring method development of low-concentration heavy metal ions in industrial processes.

19.
BMC Genomics ; 25(1): 65, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38229017

ABSTRACT

BACKGROUND: Pod shell thickness (PST) is an important agronomic trait of peanut because it affects the ability of shells to resist pest infestations and pathogen attacks, while also influencing the peanut shelling process. However, very few studies have explored the genetic basis of PST. RESULTS: An F2 segregating population derived from a cross between the thick-shelled cultivar Yueyou 18 (YY18) and the thin-shelled cultivar Weihua 8 (WH8) was used to identify the quantitative trait loci (QTLs) for PST. On the basis of a bulked segregant analysis sequencing (BSA-seq), four QTLs were preliminarily mapped to chromosomes 3, 8, 13, and 18. Using the genome resequencing data of YY18 and WH8, 22 kompetitive allele-specific PCR (KASP) markers were designed for the genotyping of the F2 population. Two major QTLs (qPSTA08 and qPSTA18) were identified and finely mapped, with qPSTA08 detected on chromosome 8 (0.69-Mb physical genomic region) and qPSTA18 detected on chromosome 18 (0.15-Mb physical genomic region). Moreover, qPSTA08 and qPSTA18 explained 31.1-32.3% and 16.7-16.8% of the phenotypic variation, respectively. Fifteen genes were detected in the two candidate regions, including three genes with nonsynonymous mutations in the exon region. Two molecular markers (Tif2_A08_31713024 and Tif2_A18_7198124) that were developed for the two major QTL regions effectively distinguished between thick-shelled and thin-shelled materials. Subsequently, the two markers were validated in four F2:3 lines selected. CONCLUSIONS: The QTLs identified and molecular markers developed in this study may lay the foundation for breeding cultivars with a shell thickness suitable for mechanized peanut shelling.


Subject(s)
Arachis , Quantitative Trait Loci , Arachis/genetics , Chromosome Mapping , Plant Breeding , Phenotype
20.
Clin Transl Oncol ; 26(6): 1338-1347, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38097822

ABSTRACT

PURPOSE: Amidst the rarity of High-grade transformation (HGT) in adenoid cystic carcinoma (ACC), this study offers unprecedented insights into its aggressive nature and clinical implications. METHODS: A 1:1 match comparison between 23 HGT patients and non-HGT counterparts was extracted from 412 ACC cases, focusing on dissecting distinctive clinicopathological features and prognostic outcomes. RESULTS: The predominant sites of HGT were the sinonasal and lacrimal glands (30.4% each). Notably, the solid subtype was the most prevalent pattern within HGT, accounting for 69.6% of cases. Compared to non-HGT, the HGT cohort exhibited significantly higher rates of lymph node metastasis (39.1% vs. 8.7%; P < 0.05), perineural invasion (60.9% vs. 26.1%; P < 0.05), and increased Ki-67 proliferation index (35.0% vs. 10.0%; P < 0.05). Moreover, HGT regions typically showed reduced or absent p63 expression, along with high-grade pathomorphology. HGT was associated with increased recurrence (55.0%) and distant metastasis (78.3%), leading to an average survival of 35.9 months and a 3-years mortality rate of 35.0%. Overall and progression-free survival rates were significantly decreased in the HGT group. CONCLUSION: This study represents the largest single-center cohort of HGT cases to our knowledge, highlighting its frequent occurrence in the sinonasal and lacrimal glands and association with poorer outcomes. The findings support classifying HGT in ACC as Grade 4, reflecting its severity.


Subject(s)
Carcinoma, Adenoid Cystic , Humans , Carcinoma, Adenoid Cystic/pathology , Carcinoma, Adenoid Cystic/mortality , Male , Female , Middle Aged , Prognosis , China/epidemiology , Case-Control Studies , Adult , Aged , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/mortality , Neoplasm Grading , Cell Transformation, Neoplastic/pathology , Lymphatic Metastasis , Survival Rate , Neoplasm Invasiveness , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL