Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 163
Filter
1.
Front Plant Sci ; 15: 1412540, 2024.
Article in English | MEDLINE | ID: mdl-38966148

ABSTRACT

Introduction: Expansins (EXPs) are essential components of the plant cell wall that function as relaxation factors to directly promote turgor-driven expansion of the cell wall, thereby controlling plant growth and development and diverse environmental stress responses. EXPs genes have been identified and characterized in numerous plant species, but not in sweetpotato. Results and methods: In the present study, a total of 59 EXP genes unevenly distributed across 14 of 15 chromosomes were identified in the sweetpotato genome, and segmental and tandem duplications were found to make a dominant contribution to the diversity of functions of the IbEXP family. Phylogenetic analysis showed that IbEXP members could be clustered into four subfamilies based on the EXPs from Arabidopsis and rice, and the regularity of protein motif, domain, and gene structures was consistent with this subfamily classification. Collinearity analysis between IbEXP genes and related homologous sequences in nine plants provided further phylogenetic insights into the EXP gene family. Cis-element analysis further revealed the potential roles of IbEXP genes in sweetpotato development and stress responses. RNA-seq and qRT-PCR analysis of eight selected IbEXPs genes provided evidence of their specificity in different tissues and showed that their transcripts were variously induced or suppressed under different hormone treatments (abscisic acid, salicylic acid, jasmonic acid, and 1-aminocyclopropane-1-carboxylic acid) and abiotic stresses (low and high temperature). Discussion: These results provide a foundation for further comprehensive investigation of the functions of IbEXP genes and indicate that several members of this family have potential applications as regulators to control plant development and enhance stress resistance in plants.

2.
Mol Ecol ; : e17457, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984778

ABSTRACT

Suaeda salsa L. is a typical halophyte with high value as a vegetable. Here, we report a 447.98 Mb, chromosomal-level genome of S. salsa, assembled into nine pseudomolecules (contig N50 = 1.36 Mb) and annotated with 27,927 annotated protein-coding genes. Most of the assembled S. salsa genome, 58.03%, consists of transposable elements. Some gene families including HKT1, NHX, SOS and CASP related to salt resistance were significantly amplified. We also observed expansion of genes encoding protein that bind the trace elements Zn, Fe, Cu and Mn, and genes related to flavonoid and α-linolenic acid metabolism. Many expanded genes were significantly up-regulated under salinity, which might have contributed to the acquisition of salt tolerance in S. salsa. Transcriptomic data showed that high salinity markedly up-regulated salt-resistance related genes, compared to low salinity. Abundant metabolic pathways of secondary metabolites including flavonoid, unsaturated fatty acids and selenocompound were enriched, which indicates that the species is a nutrient-rich vegetable. Particularly worth mentioning is that there was no significant difference in the numbers of cis-elements in the promoters of salt-related and randomly selected genes in S. salsa when compared with Arabidopsis thaliana, which may affirm that plant salt tolerance is a quantitative rather than a qualitative trait in terms of promoter evolution. Our findings provide deep insight into the adaptation of halophytes to salinity from a genetic evolution perspective.

3.
World J Clin Cases ; 12(19): 3760-3766, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38994283

ABSTRACT

BACKGROUND: Numerous studies have found that patients experiencing sudden sensorineural hearing loss (SSHL), with or without accompanying vertigo, often show impaired vestibular function. However, there is a dearth of studies analyzing vestibular-evoked myogenic potentials (VEMPs) in SSHL patients across various age groups. AIM: To investigate vestibular condition in SSHL patients across various age demographics. METHODS: Clinical data of 84 SSHL patients were investigated retrospectively. Audiometry, cervical vestibular evoked myogenic potentials (c-VEMPs), and ocular vestibular evoked myogenic potentials (o-VEMPs) were conducted on these patients. Parameters assessed included the latencies of P1 and N1 waves, as well as the amplitudes of P1-N1 waves. Moreover, the study evaluated the influence of factors such as sex, affected side, configuration of hearing loss, and presence of accompanying vertigo. RESULTS: Among the 84 SSHL patients, no significant differences were observed among the three groups in terms of gender, affected side, and the presence or absence of vertigo. Group II (aged 41-60 years) had the highest number of SSHL cases. The rates of absent o-VEMPs in the affected ears were 20.83%, 31.58%, and 22.72% for the three age groups, respectively, with no statistically significant difference among them. The rates of absent c-VEMPs in the affected ears were 8.3%, 34.21%, and 18.18% for the three age groups, respectively, with significant differences. In the unaffected ears, there were differences observed in the extraction rates of o-VEMPs in the unaffected ears among the age groups. In the three age groups, no significant differences were noted in the three age groups in the latencies of P1 and N1 waves or in the amplitude of N1-P1 waves for c-VEMPs and o-VEMPs, either on the affected side or on the unaffected side, across the three age groups. CONCLUSION: The extraction rate of VEMPs is more valuable than parameters. Regardless of the presence of vertigo, vestibular organs are involved in SSHL. Notably, SSHL patients aged 41-60 appear more susceptible to damage to the inferior vestibular nerve and saccule.

4.
BMC Genomics ; 25(1): 645, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943081

ABSTRACT

BACKGROUND: Wenchang chickens are one of the most popular local chicken breeds in the Chinese chicken industry. However, the low feed efficiency is the main shortcoming of this breed. Therefore, there is a need to find a more precise breeding method to improve the feed efficiency of Wenchang chickens. In this study, we explored important candidate genes and variants for feed efficiency and growth traits through genome-wide association study (GWAS) analysis. RESULTS: Estimates of genomic heritability for growth and feed efficiency traits, including residual feed intake (RFI) of 0.05, average daily food intake (ADFI) of 0.21, average daily weight gain (ADG) of 0.24, body weight (BW) at 87, 95, 104, 113 days of age (BW87, BW95, BW104 and BW113) ranged from 0.30 to 0.44. Important candidate genes related to feed efficiency and growth traits were identified, such as PLCE1, LAP3, MED28, QDPR, LDB2 and SEL1L3 genes. CONCLUSION: The results identified important candidate genes for feed efficiency and growth traits in Wenchang chickens and provide a theoretical basis for the development of new molecular breeding technology.


Subject(s)
Chickens , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Animals , Chickens/genetics , Chickens/growth & development , Phenotype , Animal Feed , Quantitative Trait Loci , Quantitative Trait, Heritable
5.
J Anim Sci Biotechnol ; 15(1): 70, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38730308

ABSTRACT

BACKGROUND: Carcass traits are crucial indicators of meat production efficiency. However, the molecular regulatory mechanisms associated with these traits remain unclear. RESULTS: In this study, we conducted comprehensive transcriptomic and genomic analyses on 399 Tiannong partridge chickens to identify key genes and variants associated with carcass traits and to elucidate the underlying regulatory mechanisms. Based on association analyses with the elastic net (EN) model, we identified 12 candidate genes (AMY1A, AP3B2, CEBPG, EEF2, EIF4EBP1, FGFR1, FOXD3, GOLM1, LOC107052698, PABPC1, SERPINB6 and TBC1D16) for 4 carcass-related traits, namely live weight, dressed weight, eviscerated weight, and breast muscle weight. SERPINB6 was identified as the only overlapping gene by 3 analyses, EN model analysis, weighted gene co-expression network analysis and differential expression analysis. Cell-level experiments confirmed that SERPINB6 promotes the proliferation of chicken DF1 cells and primary myoblasts. Further expression genome-wide association study and association analysis indicated that rs317934171 is the critical site that enhances SERPINB6 expression. Furthermore, a dual-luciferase reporter assay proved that gga-miR-1615 targets the 3'UTR of SERPINB6. CONCLUSIONS: Collectively, our findings reveal that SERPINB6 serves as a novel gene for chicken carcass traits by promoting fibroblast and myoblast proliferation. Additionally, the downstream variant rs317934171 regulates SERPINB6 expression. These results identify a new target gene and molecular marker for the molecular mechanisms of chicken carcass traits.

6.
J Adv Nurs ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38752674

ABSTRACT

AIM: To investigate the trajectory patterns and influencing factors of supportive care needs in stroke patients. DESIGN: A longitudinal study. METHODS: In total, 207 stroke patients who received treatment at the Department of Neurology in a hospital in Xuzhou between July 2022 and July 2023 were recruited using convenience sampling. Questionnaires including supportive care needs, hospital anxiety and depression scale, and the Barthel index were investigated at baseline and at 1, 3, and 6 months. A latent class growth model was applied to identify the supportive care needs trajectories. Multiple logistic regression was used to determine the predictors for membership. This study adheres to STROBE reporting guidelines. RESULTS: Three patterns of supportive care needs trajectories were identified: A high needs slow decline group (20.8%), a medium needs stable group (56.5%) and a medium needs rapid decline group (22.7%). Based on further analysis, the findings indicated that age, education level, monthly income, comorbidity, activities of daily living, anxiety and depression were associated with the trajectory categories of supportive care needs with stroke patients. CONCLUSION: This study demonstrates heterogeneity in changes in supportive care needs among stroke patients. Healthcare providers need to consider these different categories of needs and develop individualized care measures based on the characteristics of different patients. IMPACT: Healthcare providers should be aware of the fluctuations in care needs of stroke patients at various stages. Additionally, the study aimed to identify patients' specific needs based on their circumstances, monitor the rehabilitation process and establish a more personalized and optimized care plan through multidisciplinary collaboration. The ultimate goal was to alleviate symptomatic distress and address the long-term care needs of patients. PATIENT OR PUBLIC CONTRIBUTION: No patient or public contribution.

7.
Poult Sci ; 103(5): 103613, 2024 May.
Article in English | MEDLINE | ID: mdl-38492250

ABSTRACT

Egg weight (EW) and age at first egg (AFE) are economically important traits in breeder chicken production. The genetic basis of these traits, however, is far from understood, especially for broiler breeders. In this study, genetic parameter estimation, genome-wide association analysis, meta-analysis, and selective sweep analysis were carried out to identify genetic loci associated with EW and AFE in 6,842 broiler breeders. The study found that the heritability of EW ranged from 0.42 to 0.44, while the heritability of AFE was estimated at 0.33 in the maternal line. Meta-analysis and selective sweep analysis identified two colocalized regions on GGA4 that significantly influenced EW at 32 wk (EW32W) and at 43 wk (EW43W) with both paternal and maternal lines. The genes AR, YIPF6, and STARD8 were located within the significant region (GGA4: 366.86-575.50 kb), potentially affecting EW through the regulation of follicle development, cell proliferation, and lipid transfer etc. The promising genes LCORL and NCAPG were positioned within the significant region (GGA4:75.35-75.42 Mb), potentially influencing EW through pleiotropic effects on growth and development. Additionally, 3 significant regions were associated with AFE on chromosomes GGA7, GGA19, and GGA27. All of these factors affected the AFE by influencing ovarian development. In our study, the genomic information from both paternal and maternal lines was used to identify genetic regions associated with EW and AFE. Two genomic regions and eight genes were identified as the most likely candidates affecting EW and AFE. These findings contribute to a better understanding of the genetic basis of egg production traits in broiler breeders and provide new insights into future technology development.


Subject(s)
Chickens , Genome-Wide Association Study , Ovum , Animals , Chickens/genetics , Chickens/physiology , Chickens/growth & development , Female , Genome-Wide Association Study/veterinary , Ovum/physiology , Genetic Loci , Quantitative Trait Loci , Male
8.
Psychol Res Behav Manag ; 17: 691-703, 2024.
Article in English | MEDLINE | ID: mdl-38410378

ABSTRACT

Background: There is substantial evidence from previous studies that abnormalities in sleep parameters associated with depression are demonstrated in almost all stages of sleep architecture. Patients with symptoms of sleep-wake disorders have a much higher risk of developing major depressive disorders (MDD) compared to those without. Objective: The aim of the present study is to establish and compare the performance of different machine learning models based on sleep-wake disorder symptoms data and to select the optimal model to interpret the importance of sleep-wake disorder symptoms to predict MDD occurrence in adolescents. Methods: We derived data for this work from 2020 to 2021 Assessing Nocturnal Sleep/Wake Effects on Risk of Suicide Phase I Study from National Sleep Research Resource. Using demographic and sleep-wake disorder symptoms data as predictors and the occurrence of MDD measured base on the center for epidemiologic studies depression scale as an outcome, the following six machine learning predictive models were developed: eXtreme Gradient Boosting model (XGBoost), Light Gradient Boosting mode, AdaBoost, Gaussian Naïve Bayes, Complement Naïve Bayes, and multilayer perceptron. The models' performance was assessed using the AUC and other metrics, and the final model's predictor importance ranking was explained. Results: XGBoost is the optimal predictive model in comprehensive performance with the AUC of 0.804 in the test set. All sleep-wake disorder symptoms were significantly positively correlated with the occurrence of adolescent MDD. The insomnia severity was the most important predictor compared with the other predictors in this study. Conclusion: This machine learning predictive model based on sleep-wake disorder symptoms can help to raise the awareness of risk of symptoms between sleep-wake disorders and MDD in adolescents and improve primary care and prevention.

9.
Mil Psychol ; 36(2): 148-157, 2024.
Article in English | MEDLINE | ID: mdl-38377245

ABSTRACT

This study constructed a moderated mediation model to examine whether increased army morale could reduce suicidal ideation. The mediating role of grit and the moderating role of social support were also examined. A total of 1029 male navy cadets in China were recruited to complete the survey. The measures used in the study included the Army Morale Scale, Grit Scale, Social Support Scale, and Self-rated Idea of Suicide Scale. The results indicated that: increased army morale could significantly reduce suicidal ideation; the impact of army morale on suicidal ideation could be partially mediated by grit; and social support moderated the impact of army morale on suicidal ideation. Specifically, relatively higher levels of social support could reduce suicidal ideation among individuals with lower levels of army morale, but the effect is not significant when the morale is at a high level. The study revealed that increased army morale could reduce suicidal ideation. Moreover, the mediating role of grit and the moderating role of social support were also revealed.


Subject(s)
Suicidal Ideation , Suicide , Humans , Male , Morale , Social Support , China
10.
Chem Biol Interact ; 390: 110870, 2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38220133

ABSTRACT

Busulfan, a bifunctional alkylated chemotherapeutic agent, has male reproductive toxicity and induce oligospermia, which is associated with ferroptosis. However, the specific target cells of busulfan-induced oligospermia triggered by ferroptosis are largely elusive, and the detailed mechanisms also require further exploration. In the present study, busulfan (0.6, and 1.2 mM, 48 h) causes ferroptosis in GC-1 spg cells through inducing Fe2+, ROS and MDA accumulation and functional inhibition of Xc-GSH-GPX4 antioxidant system. After inhibition of ferroptosis by Fer-1 (1 µM, pretreatment for 2 h) or DFO (10 µM, pretreatment for 2 h) reverses busulfan-induced destructive effects in GC-1 spg cells. Furthermore, using RNA-seq and Western blotting, we found that busulfan promotes autophagy-dependent ferritin degradation, as reflected by enriching in autophagy, increased LC3 II, Beclin1 and NCOA4, as well as decreased P62 and ferritin heavy chain 1 (FTH1). Ultimately, GC-1 spg cells and Balb/c mice were treated with busulfan and/or 3-MA, the inhibitor of autophagy. The results displayed that inhibition of autophagy relieves busulfan-induced FTH1 degradation and then blocks the occurrence of ferroptosis in GC-1 spg cells and testicular spermatogonia, which subsequently alleviates busulfan-caused testicular damage and spermatogenesis disorders. In summary, these data collectively indicated that ferroptosis of spermatogonia is involved in busulfan-induced oligospermia and mediated by autophagy-dependent FTH1 degradation, identifying a new target for the therapy of busulfan-induced male infertility.


Subject(s)
Acetates , Ferroptosis , Oligospermia , Phenols , Humans , Male , Animals , Mice , Busulfan/toxicity , Spermatogonia , Oligospermia/chemically induced , Autophagy
11.
J Adv Res ; 55: 1-16, 2024 Jan.
Article in English | MEDLINE | ID: mdl-36871617

ABSTRACT

INTRODUCTION: Investigating the genetic markers and genomic signatures related to chicken meat production by combing multi-omics methods could provide new insights into modern chicken breeding technology systems. OBJECT: Chicken is one of the most efficient and environmentally friendly livestock, especially the fast-growing white-feathered chicken (broiler), which is well known for high meat yield, but the underlying genetic basis is poorly understood. METHOD: We generated whole-genome resequencing of three purebred broilers (n = 748) and six local breeds/lines (n = 114), and sequencing data of twelve chicken breeds (n = 199) were obtained from the NCBI database. Additionally, transcriptome sequencing of six tissues from two chicken breeds (n = 129) at two developmental stages was performed. A genome-wide association study combined with cis-eQTL mapping and the Mendelian randomization was applied. RESULT: We identified > 17 million high-quality SNPs, of which 21.74% were newly identified, based on 21 chicken breeds/lines. A total of 163 protein-coding genes underwent positive selection in purebred broilers, and 83 genes were differentially expressed between purebred broilers and local chickens. Notably, muscle development was proven to be the major difference between purebred broilers and local chickens, or ancestors, based on genomic and transcriptomic evidence from multiple tissues and stages. The MYH1 gene family showed the top selection signatures and muscle-specific expression in purebred broilers. Furthermore, we found that the causal gene SOX6 influenced breast muscle yield and also related to myopathy occurrences. A refined haplotype was provided, which had a significant effect on SOX6 expression and phenotypic changes. CONCLUSION: Our study provides a comprehensive atlas comprising the typical genomic variants and transcriptional characteristics for muscle development and suggests a new regulatory target (SOX6-MYH1s axis) for breast muscle yield and myopathy, which could aid in the development of genome-scale selective breeding aimed at high meat yield in broiler chickens.


Subject(s)
Chickens , Muscular Diseases , Animals , Chickens/genetics , Genome-Wide Association Study , Genomics , Gene Expression Profiling , Meat/analysis , Muscular Diseases/genetics , Muscular Diseases/veterinary
12.
Adv Mater ; 36(13): e2303869, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37632843

ABSTRACT

High-performance perovskite solar cells (PSCs) typically require interfacial passivation, yet this is challenging for the buried interface, owing to the dissolution of passivation agents during the deposition of perovskites. Here, this limitation is overcome with in situ buried-interface passivation-achieved via directly adding a cyanoacrylic-acid-based molecular additive, namely BT-T, into the perovskite precursor solution. Classical and ab initio molecular dynamics simulations reveal that BT-T spontaneously may self-assemble at the buried interface during the formation of the perovskite layer on a nickel oxide hole-transporting layer. The preferential buried-interface passivation results in facilitated hole transfer and suppressed charge recombination. In addition, residual BT-T molecules in the perovskite layer enhance its stability and homogeneity. A power-conversion efficiency (PCE) of 23.48% for 1.0 cm2 inverted-structure PSCs is reported. The encapsulated PSC retains 95.4% of its initial PCE following 1960 h maximum-power-point tracking under continuous light illumination at 65 °C (i.e., ISOS-L-2I protocol). The demonstration of operating-stable PSCs under accelerated ageing conditions represents a step closer to the commercialization of this emerging technology.

13.
J Environ Sci (China) ; 138: 516-530, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38135417

ABSTRACT

On-line chemical characterization of atmospheric particulate matter (PM) with soft ionization technique and ultrahigh-resolution Mass Spectrometry (UHRMS) provides molecular information of organic constituents in real time. Here we describe the development and application of an automatic measurement system that incorporates PM2.5 sampling, thermal desorption, atmospheric pressure photoionization, and UHRMS analysis. Molecular formulas of detected organic compounds were deducted from the accurate (±10 ppm) molecular weights obtained at a mass resolution of 100,000, allowing the identification of small organic compounds in PM2.5. Detection efficiencies of 28 standard compounds were determined and we found a high sensitivity and selectivity towards organic amines with limits of detection below 10 pg. As a proof of principle, PM2.5 samples collected off-line in winter in the urban area of Beijing were analyzed using the Ionization Module and HRMS of the system. The automatic system was then applied to conduct on-line measurements during the summer time at a time resolution of 2 hr. The detected organic compounds comprised mainly CHON and CHN compounds below 350 m/z. Pronounced seasonal variations in elemental composition were observed with shorter carbon backbones and higher O/C ratios in summer than that in winter. This result is consistent with stronger photochemical reactions and thus a higher oxidation state of organics in summer. Diurnal variation in signal intensity of each formula provides crucial information to reveal its source and formation pathway. In summary, the automatic measurement system serves as an important tool for the on-line characterization and identification of organic species in PM2.5.


Subject(s)
Air Pollutants , Particulate Matter , Particulate Matter/analysis , Air Pollutants/analysis , Mass Spectrometry , Atmospheric Pressure , Aerosols/analysis , Amines , Environmental Monitoring/methods
14.
J Adv Res ; 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38065407

ABSTRACT

INTRODUCTION: The proportion of animal based foods in daily diet of consumers is constantly increasing, with chicken being highly favored due to its high protein and low fat characteristics. The consumption of chicken around the world is steadily increasing. Intramuscular fat (IMF) is a key indicator affecting meat quality. OBJECT: High IMF content can contribute to improve the quality of chicken meat. The regulatory mechanism of IMF deposition in chicken is poorly understood, so its complete elucidation is essential to improve chicken meat quality. METHOD: Here, we performed whole genome resequencing on 516 yellow feather chickens and single-cell RNA sequencing on 3 63-day-old female JXY chickens. In addition, transcriptome sequencing techniques were also performed on breast muscle tissue of JXY chickens at different developmental stages. And 13C isotope tracing technique was applied. RESULTS: In this study, a large-scale genetic analysis of an IMF-selected population and a control population identified fatty acid synthase (FASN) as a key gene for improving IMF content. Also, contrary to conventional view, de novo lipogenesis (DNL) was deemed to be an important contributor to IMF deposition. As expected, further analyses by isotope tracing and other techniques, confirmed that DNL mainly occurs in myocytes, contributing about 40% of the total fatty acids through the regulation of FASN, using the available FAs as substrates. Additionally, we also identified a relevant causal mutation in the FASN gene with effects on FA composition. CONCLUSION: These findings contribute to the understanding of fat metabolism in muscle tissue of poultry, and provide the feasible strategy for the production of high-quality chicken meat.

15.
Microbiome ; 11(1): 198, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37653442

ABSTRACT

BACKGROUND: Improving feed efficiency is the most important goal for modern animal production. The regulatory mechanisms of controlling feed efficiency traits are extremely complex and include the functions related to host genetics and gut microbiota. Short-chain fatty acids (SCFAs), as significant metabolites of microbiota, could be used to refine the combined effect of host genetics and gut microbiota. However, the association of SCFAs with the gut microbiota and host genetics for regulating feed efficiency is far from understood. RESULTS: In this study, 464 broilers were housed for RFI measuring and examining the host genome sequence. And 300 broilers were examined for cecal microbial data and SCFA concentration. Genome-wide association studies (GWAS) showed that four out of seven SCFAs had significant associations with genome variants. One locus (chr4: 29414391-29417189), located near or inside the genes MAML3, SETD7, and MGST2, was significantly associated with propionate and had a modest effect on feed efficiency traits and the microbiota. The genetic effect of the top SNP explained 8.43% variance of propionate. Individuals with genotype AA had significantly different propionate concentrations (0.074 vs. 0.131 µg/mg), feed efficiency (FCR: 1.658 vs. 1.685), and relative abundance of 14 taxa compared to those with the GG genotype. Christensenellaceae and Christensenellaceae_R-7_group were associated with feed efficiency, propionate concentration, the top SNP genotypes, and lipid metabolism. Individuals with a higher cecal abundance of these taxa showed better feed efficiency and lower concentrations of caecal SCFAs. CONCLUSION: Our study provides strong evidence of the pathway that host genome variants affect the cecal SCFA by influencing caecal microbiota and then regulating feed efficiency. The cecal taxa Christensenellaceae and Christensenellaceae_R-7_group were identified as representative taxa contributing to the combined effect of host genetics and SCFAs on chicken feed efficiency. These findings provided strong evidence of the combined effect of host genetics and gut microbial SCFAs in regulating feed efficiency traits. Video Abstract.


Subject(s)
Gastrointestinal Microbiome , Propionates , Animals , Chickens , Genome-Wide Association Study , Genotype , Gastrointestinal Microbiome/genetics , Clostridiales
16.
Environ Sci Technol ; 57(35): 13004-13014, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37526013

ABSTRACT

High-resolution mass spectrometry is an advanced technique for comprehensive screening of toxic chemicals. In this study, urine samples were collected from both an occupationally exposed population at a coking site and normal inhabitants to identify novel urinary biomarkers for occupational exposure to coking contaminants. A coking-site-appropriate analytical method was developed for unknown chemical screening. Through nontarget screening, 515 differential features were identified, and finally, 32 differential compounds were confirmed as candidates for the current study, including 13 polycyclic aromatic hydrocarbon (PAH) metabolites. Besides monohydroxy-PAHs (such as 1-&2-naphthol, 2-&9-hydroxyfluorene, 2-&4-phenanthrol, and 1-&2-hydroxypyrene), many other PAH metabolites including dihydroxy metabolites, PAH oxide, and sulfate conjugate were detected, suggesting that the quantification based solely on monohydroxy-PAHs significantly underestimated the human exposure to PAHs. Furthermore, several novel compounds were recognized that could be considered as biomarkers for the exposure to coking contaminants, including quinolin-2-ol (1.10 ± 0.44 ng/mL), naphthylmethanols (11.4 ± 5.47 ng/mL), N-hydroxy-1-aminonaphthalene (0.78 ± 0.43 ng/mL), hydroxydibenzofurans (17.4 ± 7.85 ng/mL), hydroxyanthraquinone (0.13 ± 0.053 ng/mL), and hydroxybiphenyl (2.70 ± 1.03 ng/mL). Despite their lower levels compared with hydroxy-PAHs (95.1 ± 30.8 ng/mL), their severe toxicities should not be overlooked. The study provides a nontarget screening approach to identify chemicals in human urine, which is crucial for accurately assessing the health risks of toxic chemicals in the coking industry.


Subject(s)
Cocaine , Coke , Occupational Exposure , Polycyclic Aromatic Hydrocarbons , Humans , Coke/analysis , Chromatography, High Pressure Liquid , Occupational Exposure/analysis , Cocaine/analysis , Biomarkers , Environmental Monitoring/methods
17.
Sci Total Environ ; 899: 165582, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37467979

ABSTRACT

Exposure to polycyclic aromatic hydrocarbons (PAHs) can be associated with different types of health effects. However, the systemic changes of health effects between fluctuations of PAHs exposure have not been established. In this study, urinary hydroxylated PAHs (OH-PAHs) and 12 biomarkers were determined among 36 students from the urban to the suburb in Taiyuan in 2019. The concentration of Σ12OH-PAHs in urban areas (28.2 and 21.4 µg/g Cr) was significantly higher than that in suburban area (16.8 µg/g Cr). The regression showed that hydroxy-phenanthrene (OH-Phe, 1/2/3/4/9-OH-Phe) was significantly positively correlated with lung function (PEF25 and PEF50), 8-hydroxydeoxyguanosine (8-OHdG), interleukin-8 (IL-8), and fractional exhaled nitric oxide (FeNO). Moreover, there were negative associations of 2-hydroxyfluorene (2-OH-Flu) with FVC and FEV1. 1 unit increase of 1-hydroxypyrene (1-OH-Pyr) was negatively associated with 18.8% FVC, 17.3% FEV1, and 26.4% PEF25 in the suburban location, respectively. During urban2, each unit change of 2-OH-Flu was associated with 10.9% FVC and 10.5% FEV1 decrease, which were higher than those in suburban location. 8-OHdG decreased by 32.0% with each unit increase in 3-hydroxyfluorene (3-OH-Flu) during urban2 (p < 0.05), while 1.9% in the suburban location. During the suburban period, the increase in OH-Phe was correlated with the decrease in malondialdehyde (MDA). The respiratory damage caused by PAHs in the urban disappeared after backing to the urban from the suburban area. Notably, despite the total significant liner mixed regression association of FeNO with multiple OH-PAHs, the association of FeNO with OH-PAHs was not significant during different periods except for 2-OH-Flu. Our findings suggested that short-term exposure to different concentrations of PAHs might cause changes in health effects and called for further research to investigate possible alterations between health effects and PAH exposure.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Humans , Young Adult , Polycyclic Aromatic Hydrocarbons/toxicity , 8-Hydroxy-2'-Deoxyguanosine , Biomarkers , Oxidative Stress , Inflammation/chemically induced
18.
Environ Pollut ; 333: 122083, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37343917

ABSTRACT

In this study, the distribution of nineteen ingredients of personal care product (PCPs), including seven metabolites of phthalates (mPAEs), five benzophenone-type ultraviolet filters (BPs), and seven antimicrobial agents (AAs), were investigated in paired human hair, nail and urine samples. The median concentrations of ΣmPAEs, ΣBPs and ΣAAs were 135, 2.76 and 179 ng/g in hair, 37.3, 2.95 and 297 ng/g in nails, and 345, 4.03 and 50.1 ng/mL in urine, respectively. Mono-methyl phthalate (49%), 2,4-dihydroxybenzophenone (45%) and triclosan (71%) were the most abundant mPAE, BP and AA in hair samples, respectively, and had similar abundance in nail samples. In contrast, mono-n-butyl phthalate (45%), 4-hydroxy benzophenone (29%) and methyl paraben (54%) were the predominant mPAE, BP and AA in urine samples, respectively. Significant differences in the concentrations of some target compounds were observed between male and female but inconsistent across different matrices. Moreover, most compounds with significant correlations had quite different correlation coefficients in each matrix. No significant correlations were found between hair, nail and urine samples for most of the target analytes. These results suggest these analytes have matrix-specific distribution, and it is necessary to use multiple matrices to comprehensively assess the risk of ingredients of PCPs to human health.


Subject(s)
Phthalic Acids , Triclosan , Humans , Male , Female , Parabens/analysis , Triclosan/urine , Nails/chemistry , Phthalic Acids/urine , Benzophenones , Environmental Exposure/analysis
19.
Heliyon ; 9(6): e16779, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37292334

ABSTRACT

This study aims to investigate the classification of technological innovation meta-theories based on classical texts, as well as the relationships between various classifications. Both qualitative and quantitative methods are employed. From the perspective of technological innovation, using scientometric methods, 105 pieces of classic texts from the 1930s-2010s are extracted from the references of 3862 pieces of high-quality literature from the 1900s-2020s. As a result, based on a combination of qualitative data analysis and topic model analysis, we developed a typology with eight meta-theories of technological innovation, including performance-based, resource-based, knowledge-based, capability-based, network-based, technological-innovation-system, dual-innovation, and dynamic-sustainability views. Then we analyzed 1) the evolution, reification, and confusion relationships between different meta-theories; 2) the causes of technological innovation's concept jungle; and 3) an integrated framework of technological innovation meta-theories. This study analyzed the benefits of the meta-theoretical analysis on the future study of technological innovation. Additionally, the results of this study can help to measure technological innovation, construct new theories, and improve the efficiency of the connection between the practical problems of innovation and potentially useful theoretical frameworks.

20.
Int J Biol Macromol ; 242(Pt 4): 125060, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37245775

ABSTRACT

To improve the stability of anthocyanins (ACNs), ACNs were loaded into dual-encapsulated nanocomposite particles by self-assembly using ß-cyclodextrin (ß-CD) and two different water-soluble chitosan derivatives, namely, chitosan hydrochloride (CHC) and carboxymethyl chitosan (CMC). The ACN-loaded ß-CD-CHC/CMC nanocomplexes with small diameters (333.86 nm) and had a desirable zeta potential (+45.97 mV). Transmission electron microscopy (TEM) showed that the ACN-loaded ß-CD-CHC/CMC nanocomplexes had a spherical structure. Fourier-transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (1H NMR) and X-ray diffraction (XRD) confirmed that the ACNs in the dual nanocomplexes were encapsulated in the cavity of the ß-CD and that the CHC/CMC covered the outer layer of ß-CD through noncovalent hydrogen bonding. The ACNs from the dual-encapsulated nanocomplexes improved stability of ACNs under adverse environmental conditions or in a simulated gastrointestinal environment. Further, the nanocomplexes exhibited good storage stability and thermal stability over a wide pH range when added into simulated electrolyte drinks (pH = 3.5) and milk tea (pH = 6.8). This study provides a new option for the preparation of stable ACNs nanocomplexes and expands the applications for ACNs in functional foods.


Subject(s)
Chitosan , beta-Cyclodextrins , Anthocyanins , Chitosan/chemistry , Spectroscopy, Fourier Transform Infrared , beta-Cyclodextrins/chemistry , Microscopy, Electron, Transmission
SELECTION OF CITATIONS
SEARCH DETAIL